3DNAND技术走向新架构

智能计算芯世界 2023-06-27 07:45

几十年来,NAND 闪存一直是低成本和大密度数据存储应用的主要技术。这种非易失性存储器存在于所有主要的电子终端使用市场,例如智能手机、服务器、个人电脑、平板电脑和 USB 驱动器。在传统的计算机内存层次结构中,NAND 闪存距离中央处理器 (CPU) 最远,与静态随机存取存储器 (SRAM) 和动态 RAM (DRAM) 相比,众所周知,它相对便宜、速度慢且密度大。


这种存储技术的成功与其不断扩展密度和成本的能力有关——这是 NAND 闪存技术发展的主要驱动力。大约每两年,NAND 闪存行业就会显着提高位存储密度,以增加的 Gbit/mm²表示。


在这个发展过程中还引入了几项技术创新以维持这一趋势线。向三维的过渡可以说是最令人印象深刻的创新。在 3D NAND 闪存中,存储单元堆叠形成垂直串,单元由水平字线寻址。其他值得注意的创新包括增加每个单元的位数(最多四个)以及从浮栅晶体管过渡到用于存储操作的电荷陷阱单元。

图 1 – 典型 3D NAND 闪存结构的表示(BL=位线;WP=字板;BSP=底部选择板;SP=源板;TSL=顶部选择线)

最先进的:环绕式垂直沟道;多达 300 个字线层


尽管并非所有存储器制造商都在追求,但电荷陷阱单元是当今大多数 3D NAND 结构的基础. 该存储单元类似于 MOSFET 晶体管,在晶体管的栅极氧化物(氧化物-氮化物-氧化物 (ONO) 堆栈)中插入了一小层氮化硅 (SiN)。SiN 层包含许多可以保持静电荷的电荷捕获位点。当多晶硅栅极正偏置时,来自沟道区的电子隧道穿过氧化层并被困在SinN层中。这提高了晶体管的阈值电压。Cell的状态可以通过跨源/漏节点传递电压来测量。如果电流流动,则电池处于“无俘获电子”状态(对应1)。如果未测量到电流,则cell处于“俘获电子(或 0)状态。

由于存储窗口不足,电荷陷阱单元未能在早期的 2D NAND 平面配置中引入,存储窗口通过编程和擦除之间的阈值电压差异来衡量。但在 3D NAND 结构中,这种存储单元充分发挥了潜力,这要归功于环栅 (GAA) 垂直通道实现方法。在此 GAA 配置中,栅极堆叠完全环绕通道。这种圆柱形几何形状在隧道氧化物中产生增强的场效应。这导致更大的载流子注入到捕获层,增强了编程/擦除窗口。

GAA 制造通常从生长氧化物/字线层堆栈开始。接下来,使用先进的干法蚀刻工具通过堆叠向下钻孔来形成圆柱形孔。然后沿着孔的侧壁沉积隧道 (O) 和捕获 (SiN) 层以及多晶硅沟道。

最近,一些主要厂商宣布推出基于 3D-NAND 的产品,这些产品最多可堆叠 300 个字线层,预计这种增加层数的趋势将在未来几年继续下去。

进一步增加位存储密度的方法


在当前十年中,内存制造商将把传统的 GAA NAND 路线图推向极限。根据最乐观的预测,到本世纪末,层数将增加到 1,000,占 100Gbit/mm 2位存储密度。然而,相对于历史密度缩放路线图,这是几年的放缓。

增加层数会带来更高的处理复杂性和成本,挑战沉积和蚀刻工艺,并导致应力在层内积聚。为了克服这些挑战,业界正在引入一些互补的工艺“技巧”以最终获得1,000 层。这些包括将层数拆分为两个(或更多)堆叠层,进一步增加每个单元的位数,提高阵列效率,并减少 GAA 单元的 xy 间距。还有一种趋势是优化不同晶圆上的外围电路,并使用晶圆对晶圆键合技术将其连接到存储器阵列。然而,这些创新不足以控制不断增长的加工成本,因此,额外的追求z 间距缩放。Z 间距缩放涉及降低层堆叠中涉及的所有材料的高度,包括字线金属和氧化物。

2030 年:引入 3D 沟槽单元架构


到 2030 年,在 GAA NAND 闪存微缩已经饱和之后,imec 预计将引入一种新的架构来连接电荷陷阱单元:沟槽单元架构(trench cell architecture)。通过这种架构,3D NAND 摆脱了圆形 GAA 存储单元几何结构。相反,这些单元是在沟槽的侧壁上实现的——类似于在其侧面倾斜的平面配置——在沟槽的相对壁上有两个晶体管。这种下一代 NAND 闪存单元架构不仅将提供所需的位存储密度飞跃;它也被认为可以降低成本。然而,就像在 2D 平面配置中一样,栅极不再完全包裹在沟道周围。因此,存储器制造商担心编程/擦除窗口不足。

图 2 –(左)3D NAND GAA 和(右)沟槽器件(在 2023 IMW 上展示)的 3D 示意图。

沟槽与 GAA 单元架构的编程和擦除行为


在 2023 年 IEEE 国际存储器研讨会 (2023 IMW) 上,imec 展示了沟槽单元与GAA 存储器单元存储器操作的实验比较。两种 NAND 闪存变体都在同一晶圆上处理,即内部开发的具有多晶硅栅极和三个字线层的 3D NAND 测试载体。代替圆柱形孔,沟槽特征(300nm 宽和 1μm长)被蚀刻到沟槽结构的字平面堆栈中。沿着沟槽的侧壁形成三个垂直平坦的多晶硅沟道(沟道宽度为 50nm - 200nm),并制造源/漏结。

如果不进行优化,沟槽cell的性能将不如 GAA cell。它们具有非理想的编程和擦除效率,这分别反映在增量步进脉冲编程 (ISPP) 和擦除 (ISPE) 曲线的斜率和起点上。这转化为更小的编程/擦除窗口。在擦除方面,ISPE 曲线还显示了擦除饱和度水平的下降。

迈向 5V 内存窗口


存储窗口不佳可以解释为缺乏曲率引起的场效应,在 GAA 的情况下,这会增加载流子注入到俘获层中。针对这一缺点,imec团队想出了一个创新的解决方案,即缩小沟槽器件的沟道宽度。沟道宽度缩放有望扩大通道边缘周围形成的弯曲高注入区域的影响。换句话说,在沟道宽度大大减小的情况下,从几何角度来看,沟槽单元开始类似于 GAA 单元。

另一方面,擦除饱和水平的降低主要由来自栅极的寄生电子注入决定。这可以通过精心设计栅极堆叠和集成金属栅极来抑制。

Imec 通过实验表明,对于具有缩放沟道宽度(低至 30nm)的沟槽器件,结合替代的Hing k 衬里(linear)材料(例如 ZrO2 或 HfO2 而不是Al2 O3 ),可以实现更好的存储操作,一个工程隧道氧化物和金属栅极的集成。对于大多数研究条件,展示了高达 5V 的记忆窗口,2V 的改进——不影响保留和循环行为。该团队目前正致力于进一步改进编程和擦除操作。
图 3 – (a) 不同沟道宽度的沟槽;(b) 编程和擦除特性,在更小的沟道宽度下表现出改进(如 2023 IMW 所示)。

超高位存储密度


在展示了具有良好存储特性的沟槽存储单元后,下一步是研究潜在的与行业相关的集成方案,以堆叠更多层。预计这样的工艺流程类似于 GAA 工艺流程,增加了一个额外的模块:蚀刻沟槽侧面的垂直平坦通道条纹。如果可以为这个具有挑战性的蚀刻步骤找到工艺解决方案,imec 提出了3D 沟槽工艺流程的仿真,具有 220nm 间距的沟槽,每个沟槽宽 100nm,长约 1μm。为了确保高位密度,该流程通过蚀刻 25 纳米宽的沟道条纹和 80 纳米间距来完成。

图 4 – (a) 沟槽最终设计结构的顶视图,以及 (b) 沟槽架构的单元密度改进系数(如 2023 IMW 所示)。

从最终的设计结构来看,沟槽架构的单元密度估计是GAA 参考的三倍。预计这将随着通道间距缩放而进一步改善。基于这些结果,3D 沟槽架构可被视为未来 3D NAND 闪存的潜在突破,其位存储密度将远超 100Gb/mm²。

来源:半导体行业观察

下载链接:
面向E级计算的高性能处理器核心运算架构研究进展
自治故障管理系统推理规则的智能学习技术
基于监督学习的稀疏矩阵自动任务分配
基于某国产双路服务器的液冷散热性能实验研究
半导体行业报告:“硅”期已近,AI先行(2023)
生成式AI掀起产业智能化新浪潮
大模型+政策+功能:三重共振开启L3智能化
中国文化元宇宙AIGC发展研究报告(发布版)
机器视觉专题报告:AI+机器视觉,应用场景持续拓展

算力铸就大模型:超算、智算及数据中心行业报告(2023)

《2023年高性能计算研讨合集(上)》

《2023年高性能计算研讨合集(下)》

《AI基础知识深度专题详解合集》

2021 HPC市场份额Update剖析(附报告)
HPDA/AI市场表现Update浅析(附报告)
HPC市场份额剖析和全球超算计划(附报告)

Hyperion Research:SC22 HPC Market Update(2022.11)

Hyperion Research:ISC22 Market Update(2022.5)

Intersect360全球HPC-AI市场报告(2022—2026)

Intersect360 AMD CPU和GPU调研白皮书

ARM CPU处理器资料汇总(1)
ARM CPU处理器资料汇总(2)
ARM系列处理器应用技术完全手册
CPU和GPU研究框架合集
虚拟人应用与实践报告(2022)
2022中国商用服务机器人行业简析
CAD行业简析报告(2022)
半导体先进封装市场简析(2022)

《AIGC行业深度报告系列合集》

AIGC行业深度报告(9):华为算力编年史

8、AIGC行业报告(8):谁是国产英伟达

7、AIGC行业报告(7):ChatGPT三大主线,AI算力需求井喷

6、AIGC行业报告(6):ChatGPT存算一体,算力的下一极 

5、AIGC行业报告(5):ChatGPT加速计算服务器时代到来  

1、AIGC行业报告(1):ChatGPT开启AI新纪元(华西证券) 

2、AIGC行业报告(2):ChatGPT重新定义搜索入口 

3、AIGC行业报告(3):ChatGPT打响AI算力“军备战” 

4、AIGC行业报告(4):ChatGPT百度文心一言畅想

《70+篇半导体行业“研究框架”合集》
《42份智能网卡和DPU合集》
清华大学:AIGC发展研究1.0版
中国AIGC商用场景趋势捕捉指北(2023)
通用AI,通用技术,通向何方(2023)
276份重磅ChatGPT专业报告
《ARM v8/v9架构技术合集》
1、ARM Cortex-M3权威指南 2、ARM v8-v9架构入门指南
2023电子与半导体行业白皮书
ChatGPT+的前世今生(464页)
ARM CPU处理器资料汇总(1)
ARM CPU处理器资料汇总(2)
ARM系列处理器应用技术完全手册


本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料。




免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。



温馨提示:

请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。


智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 108浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 44浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 51浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 101浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 195浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 137浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 115浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 84浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 47浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦