入职后,我才明白什么叫Cache

一口Linux 2023-06-26 11:50

我第一次听到cache这个概念,是在大学的计算机组成原理这门课上。

由于太理论太低层,学得不咋样,考完试后就完全忘记了。

但我万万没想到,当时刚工作,我居然就要用到cache的知识。。

前言

事情其实是这样的,当时领导交给我一个perf硬件性能监视的任务,在使用perf的过程中,输入命令perf list,我看到了以下信息:

我的任务就要让这些cache事件能够正常计数,但关键是,我根本不知道这些missesloads是什么意思。

我只知道它们都是cache,但这几个名字十分类似,又有什么区别?

出于此,当时我觉得我有必要去学一下cache的知识了,我对cache、性能等的了解也因此开始。

下面是我当时学习cache总结的一些基本概念知识,对于不了解底层或者不了解cache的人,相信都会有帮助。

基本上是以问答的方式引导大家,因为我曾经也是一堆疑问走过来的。

1、什么是Cache?

首先我们要知道,cpu访问内存,不是直接访问的,而是需要先经过Cache,为什么呢?

原因:cpu内的数据是存储在寄存器中,访问寄存器的速度很快,但是寄存器容量小。而内存容量大,但是速度慢。为了解决cpu和内存之间速度和容量的问题,引入了高速缓存Cache。

Cache位于CPU和主存之间,CPU访问主存时,首先去访问Cache,看Cache中有没有这个数据,如果有,就从Cache中拿数据返回给CPU;如果Cache里没有数据,再去访问主存。

2、多级Cache存储结构

通常来说,Cache不止一个,而是有多个,即多级Cache,为什么呢?

原因:cpu访问cache速度也是很快的。但是我们做不到速度和容量完全兼容,如果cpu访问cache的速度跟cpu访问寄存器的速度差不多,那么就意味着这个cache速度很快,但是容量很小,这么小的cache容量还不足够满足我们的需求,因此引入了多级Cache。

多级Cache将Cache分成多个级别L1、L2、L3等。

  • 按照速度快慢,依次是L1>L2>L3。

  • 按照存储容量大小,依次是L3>L2>L1。

L1最靠近CPU,L3最靠近主存。

通常L1又分为instruction cache(ICache)和data cache(DCache),并且L1 cache是cpu私有的,每个cpu都有一个L1 cache。

3、“命中”和“缺失”是什么意思?

命中:CPU要访问的数据在cache中有缓存,称为“命中”,即cache hit

缺失:CPU要访问的数据在cache中没有缓存,称为“缺失”,即cache miss

4、什么是cache line?

cache line:高速缓存行,将cache平均分成相等的很多块,每一个块大小称之为cache line

cache line也是cache和主存之间数据传输的最小单位.

当CPU试图load一个字节数据的时候,如果cache缺失,那么cache控制器会从主存中一次性的load cache line大小的数据到cache中。例如,cache line大小是8字节。CPU即使读取一个byte,在cache缺失后,cache会从主存中load 8字节填充整个cache line。

CPU访问cache时的地址编码,通常由tag、index和offset三部分组成:

  • tag(标记域):用于判断cache line缓存的数据的地址是否和处理器寻址地址一致。

- index(索引域):用于索引和查找地址在高速缓存中的哪一行

  • offset(偏移量):高速缓存行中的偏移量。可以按字或字节来寻址高速缓存行的内容

cache line和tag、index、offset等的关系如图:

5、cache访问的是虚拟地址还是物理地址?

我们知道,CPU访问内存不是直接访问的,而是CPU发出一个虚拟地址,然后经过MMU转换为物理地址后,根据物理地址从内存取数据。那么cache访问的是虚拟地址还是物理地址

答:不一定。既可以是虚拟地址,也可以是物理地址,也可以是虚拟地址和物理地址的组合。

因为cache在硬件设计上有多种组织方式:

  • VIVT虚拟高速缓存:虚拟地址的index,虚拟地址的tag。
  • PIPT物理高速缓存:物理地址的index,物理地址的tag。
  • VIPT物理标记的虚拟高速缓存:虚拟地址的index,物理地址的tag。

6、什么是歧义和别名问题?

歧义(homonyms:相同的虚拟地址对应不同的物理地址

别名(alias:多个虚拟地址映射到了相同的物理地址(多个虚拟地址被称为别名)。

例如上述VIVT方式就会存在别名问题,那VIVT、PIPT和VIPT那个方式更好呢?

PIPT其实是比较理想的,因为index和tag都使用了物理地址,软件层面不需要任何维护就能避免歧义和别名问题。

VIPT的tag使用了物理地址,所以不存在歧义问题,但index是虚拟地址,所以可能也存在别名问题

VIVT的方式,歧义和别名问题都存在。

实际上,现在硬件中使用的基本是PIPT或者VIPT。VIVT问题太多,已经成为了历史了,不会有人用。另外PIVT的方式是不存在的,因为它只有缺点没有优点,不仅速度慢,歧义和别名问题也都存在。

cache的组织方式,以及歧义和别名问题,是比较大块的内容。这里只需要知道cache访问的地址既可以是虚拟地址,也可以是物理地址,也可以是虚拟地址和物理地址的组合。并且不同的组织方式会有歧义和别名问题。

7、Cache分配策略?

指的是发生cache miss时,cache如何分配。

读分配:当CPU读数据时,发生cache缺失,这种情况下都会分配一个cache line缓存从主存读取的数据。默认情况下,cache都支持读分配。

写分配:当CPU写数据发生cache缺失时,才会考虑写分配策略。当我们不支持写分配的情况下,写指令只会更新主存数据,然后就结束了。当支持写分配的时候,我们首先从主存中加载数据到cache line中(相当于先做个读分配动作),然后会更新cache line中的数据。

8、Cache更新策略?

指的是cache命中时,写操作应该如何更新数据。

写直通:当CPU执行store指令并在cache命中时,我们更新cache中的数据并且更新主存中的数据。cache和主存的数据始终保持一致

写回:当CPU执行store指令并在cache命中时,我们只更新cache中的数据。并且每个cache line中会有一个bit位记录数据是否被修改过,称之为dirty bit。我们会将dirty bit置位。主存中的数据只会在cache line被替换或者显示的clean操作时更新。因此,主存中的数据可能是未修改的数据,而修改的数据躺在cache中cache和主存的数据可能不一致。

最后

关于cache的内容,还有TLB、MESI、内存一致性模型等等,是一个需要沉淀和总结才能真正掌握的东西。

但可能很多人都用不上,只有涉及到性能问题,当你需要提高cache命中率时,才知道这些知识的重要性。

关于本文讲的知识,总结了一份cache基础知识的思维导图:


这是一口君的新书,感谢大家支持!

end


一口Linux 


关注,回复【1024】海量Linux资料赠送

精彩文章合集


文章推荐

【专辑】ARM
【专辑】粉丝问答
专辑linux入门
专辑计算机网络
专辑Linux驱动
【干货】嵌入式驱动工程师学习路线
【干货】Linux嵌入式所有知识点-思维导图

一口Linux 写点代码,写点人生!
评论 (0)
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 95浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 215浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 100浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 169浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 173浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 191浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 128浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 117浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 573浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 224浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 84浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦