超级快充技术,谁在做?

线束世界 2023-06-26 07:22


众多车企布局超级快充

为了实现超级快充,对于充电过程中最重要的载体——电池,也需要进行一定困扰电动车主的补能问题将要被解决了!超级快充将成为重要的手段。一众车企都在布局。


车企布局超级快充情况表


从各家车企官方的数据来看,新一代车型基本上可以在20分钟左右充电至80%以上。


小鹏汽车推出的旗舰车型G9,补能速度快成为了该车重要的卖点之一。根据官方的数据显示,小鹏G9可以在5分钟内补充200公里续航。以570公里续航版本车型为例,小鹏G9在15分钟内就可以充满电,而此前小鹏P7在快充模式下则需要30分钟才可以充电至80%,对比来看,G9的充电速度提升了一倍以上。而凭借这一性能,小鹏G9也喊出了全球充电最快量产车的口号。


特斯拉无疑是最早布局的车企之一,目前其峰值充电功率可以接近250kW。在特斯拉之外,保时捷也是在超级充电方面发力比较早的车企,保时捷首款纯电动车型Taycan上第一个采用了800V架构,充电功率可以达到250kW,当时其充电功率甚至压过了特斯拉。据官方介绍,它的充电功率还可以提升至320kW。


保时捷Taycan


国内车企关于超级充电的竞争则更加激烈。广汽埃安最新推出AION V Plus车型可以在5分钟内补能至112公里,后续将会进一步提升到207公里,从数据上来看已经隐隐可以和小鹏G9掰手腕了。极狐也曾表示其阿尔法S可以在10分钟补能200公里。此外,部分车企虽然还没有拿出具体的产品,但也都曾展示了自己在充电方面的目标。比亚迪e平台3.0上推出的一款概念车型ecean-X可以实现充电5分钟续航150公里。这说明,比亚迪e平台3.0上生产的后续车型可能也将会具备非常强的快充能力。极氪汽车采用了800V架构,支持理论360kW超级充电;岚图汽车表示在800V架构和360kW超充桩的加持下,可实现充电10分钟续航400公里。


此外,长城汽车、极星、理想等车企也都在布局超级快充。虽然目前各家车企的进展并不相同,但无一例外地都将超级充电作为了下一阶段的重点方面,并且还已经找到了可行的技术方案。


电池成为重要的载体

为了实现超级快充,对于充电过程中最重要的载体——电池,也需要进行一定的调整。电池的快充主要看电池的充放电倍率,影响充电倍率主要有三个原因:电极材料、充电桩充电功率和动力电池温度。对于电池企业来说,充电桩充电功率是客观因素,电极材料和温度控制则是电池厂可以做出改变的地方。


在动力电池环节,电池快充能力取决于电芯负极快速嵌锂能力、电解液导电率以及电池系统的热管理能力等多个能力。


快充时,锂离子需要加速瞬时嵌入到负极。这对负极快速接收锂离子的能力挑战很大。若负极没有高速嵌锂能力,则会出现析锂甚至锂枝晶,进而导致电池容量不可逆衰减和缩短使用寿命;此外,电解液也需要较高导电率,同时要求能抗高温、阻燃、防过充。另一方面,大功率快充会带来发热量的大幅增加,高压电池包的热管理至关重要。


一般而言,在电池包的安全设计上,可以通过应用隔热性能更高的隔热材料,例如陶瓷隔热垫、云母板,进行热扩散防护。但在被动热防护之外,主动热防护方案也至关重要。上海车展上,各家动力电池企业也围绕材料创新及整包热管理两方面“大展身手”。



宁德时代麒麟电池 



此前,宁德时代的超快充技术已经涵盖电子网、快离子环、各向同性石墨、超导电解液、高孔隙隔膜、多梯度极片、多极耳、阳极电位监控等。


各向同性技术使得锂离子可以从360度嵌入石墨通道中,实现充电速度的显著提升;阳极电位监控可实时调整充电电流,使电池在无析锂副反应的安全范围内发挥最大的充电能力,实现极限充电速度与安全的平衡。三元版麒麟电池采用了高镍正极+硅基负极体系,能量密度可达255Wh/kg,支持5分钟快速热启动及10min充电80%。但充放电过程中硅的体积膨胀可高达400%,活性材料易从极片上脱离,引起容量快速衰减,同时形成不稳定的SEI膜。因此宁德时代的导电材料采用了1.5~2纳米管径的单壁碳纳米管,对硅负极束缚力更强,导电网络更充分,即使硅负极颗粒发生体积膨胀并开始出现裂缝时,仍可通过单壁碳纳米管保持良好连接。此外,麒麟电池的电解液采用LiFSI,并使用FEC添加剂,在负极形成氟化锂,离子半径小,能及时修复裂缝。热管理方面,麒麟电池将液冷系统和隔热垫集成于多功能弹性夹层中置于电芯之间,相对于传统的整块铺设在电芯上方的液冷板方案,换热面积扩大了4倍。得益于更大的冷却面积,电芯的控温效率提升了50%。立式冷却板打造横向相对隔离空间,纵向电芯间有膨胀补偿片+绝热气凝胶,有效隔热实现“零热失控”。



中创新航“顶流”电池



在800V高压快充领域,中创新航布局了方形和极速超充大圆柱两条路线。其方形产品支持4C快充,大圆柱支持6C快充。今年4月,中创新航首发了“顶流”电池,采用一体化装配技术,打造极耳直连顶部一体式集流盘。通过一体式集流盘设计,相较普通的无极耳电池,“顶流”电池实现电流流经路径下降70%,ACR(交流内阻)下降27%,DCR(直流阻抗)下降40%,结构内阻下降50%,空间利用率提升3%。在化学体系创新上,中创新航还通过原创“极质”电解液技术,革新快充体系设计。



欣旺达“闪充电池”



2022年9月,欣旺达发布旗下超级快充动力电池产品——SFC480,该产品最大充电功率达480kW,实现充电5分钟续航200km,充电10分钟续航400km,一次充电续航可达700km。材料创新方面,SFC480采用高电压低钴Ni60正极体系,并采用复合包覆和R元素掺杂技术方案,改善了正极材料的产品性能,使该电池同时具备高能量密度和快充和高安全性能。同时,SFC480在系统层面还导入全新一代3D液冷技术,实现-20℃低温下能量保持率高于85%,体积利用率达到72%以上,全系产品无热扩散。上海车展上,欣旺达发布了升级之后的“闪充电池”,具有超快充、欣安全、特耐用等特点,进一步支持电动汽车续航1000公里,10分钟可从20%充至80% SOC。



蜂巢能源龙鳞甲电池



蜂巢能源在正极材料上采用前驱体定向生长的精密控制技术,将电芯内部阻抗降低10%以上,负极材料采用液相包覆技术,在石墨表面包覆无定形碳,进一步将电芯阻抗降低至20%负极;电解液也采用了含硫添加剂/锂盐添加剂等低阻抗添加剂体系;隔膜采用高孔隙陶瓷膜,提升隔膜导离子能力同时可兼顾耐热性,达到快充及安全的平衡。龙鳞甲采用双面冷却设计,让电芯大面积和冷却板接触,让冷却板迅速带走电芯的热量,换热能力较一般水平提升70%。既可提升非充电场景下电池包的安全,也可显著提升电动车快充场景的安全性。



亿纬锂能大圆柱电池π系统



上海车展上,亿纬锂能透露,其46系列大圆柱电池采用自研全极耳结构及镍+硅碳材料体系,具备设计、制造、回收标准化特征,可围绕46mm直径做不同的高度,灵活利用空间可兼容各种车型。其4695 BEV模组冷却主要是通过侧面蛇形管路进行,每两排电芯之间放置一个液冷板。与麒麟电池、龙鳞甲电池思路类似,亿纬锂能整体泄压设计朝下,每个支架对应留有孔位,支架下方放置云母板。亿纬锂能还在发布会推出π电池系统,支持9分钟快充,拥有“π”型冷却技术,在电芯顶部及左右两侧构建传热通道,实现立体传热,解决快充发热问题;在CTP集成技术基础上,应用高效复合新型材料和胶黏剂,使系统减重10%,实现小空间、低重量、高续航。此外,亿纬锂能还推出了方形叠片、BEV方形系统、12V/48V电池系统产品等。BEV方形系统采用大面高效液热技术和高分子涂层保温技术,低温性能表现优异;3C快充电芯、大面液冷均温技术支持超快充;基于模块集成+CTP技术,应用钢铝复合箱体,实现高集成、轻量化;主动热控技术与气电隔离技术可保障系统全生命周期NTP。第二代高功率、高集成度48V电池系统,采用集成式液冷系统,实现高效的热管理目标;高功率和低阻抗电池系统的设计,可实现高脉冲放电性能;集成液冷技术、极致均温均衡技术为循环寿命保驾护航。



巨湾技研XFC极速超充电池



巨湾技研采用独特的新型导电剂材料和系统性的工程设计,电芯采用高倍率改性正负极材料和高电导电解液,在电极内都构建高效的三维导电网络,提高了锂离子的嵌入\脱出的动力学性能。配合最高可达900V的高电压平台,电池最大充电速度是现在普通电池的6倍以上,最大充电功率480kw,能做到7.5分钟充电0%-80%。上海车展首日,合创汽车发布上市的纯电旗舰MPV V09上搭载了巨湾技研为其定制开发生产的12MinXFC电池包,可实现充电10分钟续航400km。这款 XFC 极速电池包采用了>200Wh/kg 高能量密度极速电芯材料,应用新型导电剂,以及高效热管理系统,可确保不少于 40 万公里的常年常温极速快充,支持 V09 实现全生命周期的极速充电。另外,XFC 电池在极限热失控试验中,做到了热失控触发后电池包 24 小时无明火,能够保障汽车使用过程中的安全性和耐用性。


6月6日,巨湾技研发布了其自主研发的巨湾凤凰电池。凤凰电池具备三大技术亮点,分别是高效能热管理、多合一弹仓式结构、总线电压升降开关矩阵,可大幅提升动力电池的安全性及充电速度,让新能源电动汽车的运行和XFC(eXtreme Fast Charge)极速快充,不受环境气候及电压平台限制。


该电池的最大亮点是,在极速快充方面较具竞争力,可实现最高8C(在1/8小时内充满电池)极速充电,0-80%充电仅需6分钟。结合其充一次电续航里程可达1000km的数据,6分钟充到80%意味着新车续航达800km。


这样的充电速度目前在业内领先。根据计划,凤凰电池将于明年量产上车。


此外,瑞浦兰钧“问顶"电池、孚能科技SPS大软包方案、捷威动力海绵系统等,也针对快充场景下的材料创新与整包热管理进行了针对性开发。值得注意的是,行业人士指出,快充电池的电芯成本比普通电池至少高5%-8%,叠加超充桩的投资成本高达普通直流桩的几倍,当前布局800V高压平台车型的仍然以头部车企为主。中期来看,在成本上,车企还无法实现将800V高压快充覆盖至15万元以内的车型。因此在10万元-20万元的汽车市场中,混动车型表现将更为突出;但在20万元以上市场中,超快充技术将推动纯电车型保有量进一步扩大。在未来,实现快充技术普惠性降本、并通过车网互动减少电网压力,将成为快充赛道的竞争重点与发展方向。



快充到超级快充

EV充电功率提升背后的快充连接



平台架构从400V升级至800V要求连接器重新选型,连接器数量可能增加(增加大功率快充接口);在同等功率条件下,电压提高,电流减小,线缆耐压性提高、体积减下。


几乎所有新型电动汽车设计都依靠快速充电来完善补充传统的充电技术,这是实现突破的根基。我们可以看一下目前一些连接器厂商已经推出的快充、超级快充连接器与相关技术。




HARTING COMBO DC快充连接器



作为宝马和大众集团的1级供应商,HARTING的COMBO系列用于连接快速充电站的组合2型充电,目前充电功率最高200kW(200 A / 1000V)。



COMBO DC快充连接器,HARTING整个连接器无热表面,热管理十分出色,而且电缆横截面也非常小,提供了足够小的接触电阻。COMBO使用薄片“郁金香”形电插头,在数千次插拔后也能确保充电效果,接触材料上选择了具有卓越电流和电压特性的材料确保导电性能,外壳上玻璃纤维增强塑料既减轻了重量又保证了耐用性。据悉HARTING也在布局液冷技术,结合DC快充实现更高的充电功率。


史陶比尔QCC连接器


史陶比尔的高功率充电系统QCC自动充电连接,仅需充电二十分钟,即可连续作业四到五小时。QCC能实现高功率传输,确保锂离子电池和超级电容等储能设备的快速充电。QCC采用全封闭设计,插合及未插合情况下均能提供防水、防触摸保护,可承受高达1500V、670A的持续电流,1440A的短时电流。



QCC,史陶比尔TE快速充电连接器TE的快速充电产品组合相当丰富,也是特斯拉快充连接器件的供应商。TE的快充充电插座集成传感和驱动,在实现智能充电控制的同时,提供安全可靠的触摸安全操作和充电状态反馈。这些连接件还可以扩展,顺应车辆内多种多样的客户电气/电子架构,从离散的点对点操作到通过分布式智能控制等等。



TETE正在开发高压、物理兼容的电池模块触点和连接接口,以便能够扩展充电电池组。这些互连件坚固耐用,集成电流、电压和温度感应,能够智能控制电池管理(充电状态和健康状态)。TE 1MW+的液冷超级快充连接也在布局中。



永贵超级快充连接



四川永贵则是国内超级快充的头部厂商,走的是液冷技术路线。液冷超充在相同充电电流的工况下,可以大幅减少导体的资源用量,同时还可显著减低易发热部位的温升,技术壁垒高。永贵电器表示,受新能源汽车行业高速发展的影响,公司得以积极争取新客户新项目,新能源汽车连接器、充电枪等拳头产品出货量不断提升,能实现最大电流600A、额定电压1000V的汽车充电。目前永贵的液冷快充产品已经实现商业化量产,客户包括吉利、华为、理想等。



日丰股份超级充电系统



据日丰股份官方披露,其子公司上海艾姆倍新能源科技有限公司研发超级液冷大功率充电枪及超级充电系统目前已经完成核心技术开发及相关验证。根据网上相关资料,其充电功率非常高,充电电流能到600A。日丰股份在2022年5月13日的业绩说明会中表示公司研发的超级液冷大功率充电系统是原创产品,电流最大可到1000A。可以看到,国内厂商在快充连接这条路上竞争力十足。根据中信证券预测,到2025年国内充电枪市场规模将超过40亿元,其中液冷直流枪占比超25%,单价约3000-4000元。在产业变革和国内智能汽车品牌领先的推动下,国产快充连接器厂商有望凭借技术突破、快速响应以及成本优势,抓住机遇做到全球领先。


往期精选

本田因后置摄像头连接器问题在全球召回 130 万辆汽车

既拒绝收购Leoni汽车电缆解决方案后,泰国Stark陷入财务危机,股价已暴跌至接近零

现代汽车考虑加入特斯拉北美充电标准 (NACS)联盟

Rivian将与通用,福特一起采用 Tesla 的 NACS连接器

点击阅读原文

进入线束世界官网


评论
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 113浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 99浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 70浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 80浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 92浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 93浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 153浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 74浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 57浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 99浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 57浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 59浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 69浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 62浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 108浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦