多重光学魔角:纳米光场调控

MEMS 2023-06-26 00:01

光子作为信息载体具有速度快和容量大的优势,光子芯片也被认为是下一代通信技术(光通信)的基础设施。得益于成熟的半导体工艺,电子传播行为可通过纳米电路进行精确调控,故传统电子芯片应用取得巨大成功。然而,光子在纳米尺度上传播行为的调控依然是下一代低损耗光子芯片研发所面临的核心问题:


1. 光的衍射导致光场的纳米局域困难;


2. 低频波段(中红外等)的理想波导材料(高折射率、低损耗)非常稀缺,且波导结构的制备往往带来额外的光学损耗。


纳米光子学中利用高光场局域极化激元波(光子与其它粒子耦合产生的半光-半物质电磁模式)实现光学通路及其片上集成是光子芯片研究的前沿方向。近期转角光子学的发展为红外光场的纳米局域和低损耗传播带来了新希望,研究发现当两层各向异性二维材料之间转角为某一固定值(光学魔角)时,极化激元波所有波矢分量对应的波印廷矢量均指向同一方向,即光场能量沿着特定方向低损耗且无衍射传播,是红外光的天然纳米波导(无需复杂的微纳加工制备过程)。


然而,同一个双层转角器件只在某一特定频率下存在一个光学魔角,即针对单一频率光子的天然波导。与此同时,光学魔角下光场能量沿某一固定方向传播,传统的调控技术(例如构建折射界面、改变介电环境等)无法实现纳米光场无衍射传播的调控。

近日,北京理工大学姚裕贵教授团队的段嘉华教授与西班牙奥维耶多大学的Pablo Alonso Gonzalez教授团队、西班牙国际物理学中心的Alexey Yu Nikitin教授团队合作,在三层转角氧化钼晶体中发现多重光学魔角,通过转角重构实现了纳米光场无衍射传播方向的面内全角度调控(0-360°),且覆盖宽光谱频率。

该成果发表在Nature Materials,题为“Multiple and spectrally robust photonic magic angles in reconfigurable MoOtrilayers”。北京理工大学段嘉华和奥维耶多大学Gonzalo Alvarez Perez, Christian Lanza, 西班牙国际物理学中心Kirill Voronin为论文的共同第一作者,段嘉华、Pablo Alonso Gonzalez、Alexey Yu Nikitin为共同通讯作者。


三层转角氧化钼晶体中转角的重构

研究人员基于二维材料转移技术,利用自主搭建的微操控平台精确控制三层转角氧化钼晶体中的转角度数。转角重构的三层结构制备过程为:块体材料机械剥离→获得二维层状氧化钼晶体→将第一层氧化钼晶体置于衬底指定位置→将第二层氧化钼晶体以某一固定转角放置在第一层晶体上→将第三层氧化钼晶体以某一固定转角放置在第二层晶体上(如图1所示)。值得指出的是,通过微区拾取技术可以将制备的三层氧化钼结构进行拆分,重复上述过程可以实现转角的多次重构,即在同一个样品中研究转角对红外纳米光场无衍射传播的调制作用。

图1:转角可重构的三层氧化钼晶体结构制备。



普适理论模型构建

此前转角光子学研究中为了减少双层转角结构光学性质理论预测的计算量,将有一定厚度的氧化钼材料近似为二维平面(二维近似模型),即不考虑氧化钼晶体内部的电磁场分布,如图2所示。这种二维近似模型在氧化钼材料层厚较小时可以较为精确的预测极化激元的传播行为。但三层转角氧化钼结构整体层厚较大(约为几百纳米),且层间存在空气层,二维近似模型不再适用于其光学性质的精准预测。为了解决这一问题,研究人员建立了更加普适的理论模型(适用条件放宽至极化激元波长远小于入射光波长),且在层状材料间增加了空气层。

图2:二维近似模型和普适模型的对比。二维近似模型将上层(Top)、中层(Middle)、下层(Bottom)氧化钼材料近似为二维平面。


如图3所示,普适模型计算的三层转角氧化钼体系中极化激元等频线(某一固定频率下极化激元波矢kx,ky,kz所有取值在k空间形成的面或线)解析解(红色实线)与数值模拟结果(背景色)一致。与此同时,除某些特殊情况(灰色区域)外,大部分转角(θ1-2为第一层和第二层氧化钼晶体之间的转角,θ1-3为第一层和第三层氧化钼晶体之间的转角)度数下极化激元等频线表现为平行直线(即无衍射传播)。更为有趣的是,转角改变时等频线法线方向也在发生变化(例如θ1-2 =30°, θ1-3 =-40°时法线与竖直方向夹角为φc=50°,而θ1-2 =30°, θ1-3 =-60°时φc=80°),即可以通过改变三层氧化钼晶体转角实现纳米红外光场低损耗、无衍射传播的面内全角度调控。

图3:三层转角氧化钼晶体中极化激元等频线的理论计算。红色实线为解析解(灰色实线为极化激元衰减较大的动量组分),背景色为数值模拟结果。


如图4所示,在双层转角氧化钼晶体中通过改变材料层厚、入射光频率等多个参数仅能在0-30°的范围内实现纳米光场无衍射传播方向的调控。然而,三层转角氧化钼晶体中通过改变转角(相同的三层氧化钼晶体,不改变材料层厚)可以实现纳米红外光场无衍射传播方向的面内全角度(0-360°)调控。

图4:纳米红外光场场强角分布的理论计算。光学魔角下,光场能量沿固定方向传播(场强角分布较窄)。双层转角结构中光场传播方向仅在0-30°范围内可调,而三层转角结构可实现面内全角度调控。


多重光学魔角的实验验证

为了在实验上直接观测三层氧化钼晶体中转角对纳米红外光场无衍射传播的调制作用,研究人员采用了散射型扫描近场光学显微镜(s-SNOM)来表征三层转角氧化钼晶体的近场光学分布。如图5所示,氧化钼表面的金纳米天线可以有效的聚焦红外光,从而激发极化激元,其近场光学信号通过针尖散射收集到探测器。

图5:扫描近场光学显微镜示意图。金纳米天线可以有效的激发极化激元,当针尖在氧化钼表面逐点扫描后可以得到近场光学图像。


从图6中可以看到:


● 当θ1-2=30°, θ1-3 =-90°时,极化激元表现为沿着φc =140°的方向高度定向传播,其等频线为平行直线(即波印廷矢量沿同一方向,如内插图所示)。


● 当θ1-2 =30°, θ1-3 =-60°时,极化激元表现为沿着φc=80°的方向高度定向传播。


● 当θ1-2 =30°, θ1-3 =-40°时,极化激元表现为沿着φc =50°的方向高度定向传播。

图6:不同转角三层氧化钼晶体的近场光学图像。当转角发生变化时,极化激元沿不同方向无衍射传播。


上述实验表明在三层转角氧化钼晶体中存在多个光学魔角,不同光学魔角下纳米红外光场沿不同方向低损耗、无衍射传播,与之前的理论研究一致。也就是说,通过改变转角可以在三层氧化钼晶体中实现纳米光场无衍射传播方向的面内全角度调控。



宽光谱频率下纳米光场的低损耗无衍射传播

理论研究(图7)表明,三层转角氧化钼晶体中极化激元等频线可以在很宽的频率范围(870 cm-1-940 cm-1)内表现为平行直线(无衍射传播)。从图7内插图中可以看出,当入射光频率为ω0=901 cm-1, ω0=909 cm-1, ω0=917 cm-1, ω0=930 cm-1时,极化激元等频线保持为平行线,即纳米光场沿φc =50°的方向高度定向传播。

图7:入射光频率变化时三层转角氧化钼晶体中极化激元等频线的理论计算结果。左侧内插图为入射光ω0=901 cm-1, ω0=909 cm-1, ω0=917 cm-1, ω0=930 cm-1时的等频线。右侧内插图为俯视图。


同样的,为了在实验中观测这一现象,研究人员采用s-SNOM获得了不同入射光频率下三层转角氧化钼晶体的近场光学图像。如图8所示,当入射光频率从901 cm-1变化至930 cm-1时,近场光学图像与理论预言一致:金纳米天线激发的极化激元表现为沿着φc=50°的方向高度定向传播(无衍射损耗)。这说明在三层转角氧化钼晶体中光学魔角具有光谱鲁棒性,可以在宽光谱范围内实现纳米红外光场的高度定向传播。

图8:不同入射光频率下极化激元的近场光学成像。当入射光频率变化时,三层转角氧化钼晶体中极化激元沿φc=50°的方向高度定向传播,相应的等频线(内插图)表现为平行直线。

此前双层转角结构中通过转角来调控天然范德瓦尔斯晶体光学色散奠定了“转角光子学”的基础,而这一新工作通过引入三层转角氧化钼晶体在宽光谱频率范围内实现了多重光学魔角,有助于推动“转角光子学”在光信息传输、纳米成像、集成光子电路、光热转换等多领域的应用。然而,三层转角体系的样品制备过程还较为复杂,且纳米光场的传播损耗仍然较高。如能在更加简单的体系中实现光学魔角并进一步降低光场在纳米尺度的传播损耗,或实现多层二维材料的原位旋转(结合力学微结构和转角光子学),将有助于实现超低损耗、高局域纳米光场传播的精确调控,为光学通路搭建和下一代光子芯片设计加工铺平道路。


  论文信息  

Duan, J., Álvarez-Pérez, G., Lanza, C. et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO3 trilayers. Nat. Mater. (2023).

https://doi.org/10.1038/s41563-023-01582-5


MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 65浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 118浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 63浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 161浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 75浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 60浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦