碳化硅(SiC)产业技术难点与突破

一览众车 2023-06-25 11:50

2023年电动智能汽车行业报告汇总(点击进入)

碳化硅芯片不仅是一个新风口,也是一个很大的挑战,那么我们来碳化硅技术壁垒分析下碳化硅技术壁垒是什么?碳化硅技术壁垒有哪些?
1) 第一代半导体材料以传统的硅(Si)和锗(Ge)为代表,是集成电路制造的基础,广泛应用于低压、低频、低功率的晶体管和探测器中,90%以上的半导体产品 是用硅基材料制作的;
2) 第二代半导体材料以砷化镓(GaAs)、磷化铟(InP)和磷化镓(GaP)为代表, 相对硅基器件具有高频、高速的光电性能,广泛应用于光电子和微电子领域;
3) 第三代半导体材料以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚 石(C)、氮化铝(AlN)等新兴材料为代表
碳化硅是第三代半导体产业发展的重要基础材料,碳化硅功率器件以其优异的耐高压、耐高温、低损耗等性能,能够有效满足电力电子系统的高效率、小型化和轻量化要求。
因其优越的物理性能:高禁带宽度(对应高击穿电场和高功率密度)、高电导率、高热导率,有望成为未来最被广泛使用的制作半导体芯片的基础材料。特别是在新能源汽车、光伏发电、轨道交通、智能电网等领域具有明显优势。
碳化硅技术壁垒是什么?碳化硅技术壁垒有哪些?
SiC 生产过程分为 SiC 单晶生长、外延层生长及器件制造三大步骤,对应的是产业链衬底、外延、器件与模组四大环节。
主流制造衬底的方式首先以物理气相升华法,在高温真空环境下将粉料升华,通过温场的控制在籽晶表面生 长出碳化硅晶体。以碳化硅晶片为衬底,使用化学气相沉积法,在晶片上淀积一层单晶形成外延片。其中,在导电型碳化硅衬底上生长碳化硅外延层,可制成功率器件,主要应用于电动车、光伏等领域;在半绝缘型碳化硅衬底上生长氮化镓 外延层,可进一步制成射频器件,应用于 5G 通讯等领域。
就目前而言,碳化硅产业链中碳化硅衬底的技术壁垒最高,碳化硅衬底生产难度最高。
SiC的生产瓶颈尚未完全彻底的解决,原料晶柱的质量不稳定存在良率问题,这就导致了SiC器件的成本过高。硅材料长晶平均只要3天即可长成一根晶棒,但碳化硅晶棒则需要一周,一般的硅晶棒可以长200公分的长,但一根碳化硅的晶棒只能长出2公分。而且SiC本身属于硬脆性材料,由其制成的晶圆,在使用传统的机械式切割晶圆划片时,极易产生崩边,影响产品良率及可靠性。SiC基板与传统的硅晶锭有很大不同,从设备、工艺、处理到切割的一切都需要进行开发,以处理碳化硅。
碳化硅产业链主要分为衬底、外延、器件和应用四大环节,衬底材料是产业链的基础,外延材料是器件制造的关键,器件是产业链的核心,应用是产业发展的动力。产业上游利用原材料通过物 理气相升华法等方法制成衬底材料,再利用化学气相沉积法等方法生长外延材料, 产业中游基于上游材料制成射频器件、功率器件等器件,最终应用于下游 5G 通信、电动汽车、轨道交通等。其中,衬底和外延共占产业链成本 60%,是产业链主要价值所在。
SiC衬底:SiC晶体通常用Lely法制造,国际主流产品正从4英寸向6英寸过渡,且已经开发出8英寸导电型衬底产品,国内衬底以4英寸为主。由于现有的6英寸的硅晶圆产线可以升级改造用于生产SiC器件,所以6英寸SiC衬底的高市占率将维持较长时间。
碳化硅衬底工艺复杂,制作难度大。碳化硅衬底是一种由碳和硅两种元素组成的 化合物半导体单晶材料。目前行业内主要以高纯碳粉、 高纯硅粉为原料合成碳化 硅粉,在特殊温场下,采用成熟的物理气相传输法(PVT 法),在晶体生长炉中 生长不同尺寸的碳化硅晶锭,最后经过加工、切割、研磨、抛光、清洗等多道工 序产出碳化硅衬底。
稳定量产性能稳定的高品质碳化硅晶片的技术难点有:
1)由于晶体需要在 2000℃以上的高温密闭环境生长,对控温要求极高;
2)由于碳化硅存在 200 多种晶体结构,但只有少数几种结构的单晶型碳化硅才是 所需的半导体材料,在晶体生长过程中需要精确控制硅碳比、生长温度梯度、晶 体生长速率以及气流气压等参数;
3)气相传输法下,碳化硅晶体生长的扩径技术难度极大;
4)碳化硅硬度与金刚石接近,切割、研磨、抛光技术难度大。
SiC外延:通常用化学气相沉积(CVD)方法制造,根据不同的掺杂类型,分为n型、p型外延片。国内瀚天天成、东莞天域已能提供4寸/6寸SiC外延片。对于SiC外延来说,高压领域控制难,SiC外延质量对SiC器件影响较大。而且外延设备被行业四大龙头企业 Axitron、 LPE、TEL 和 Nuflare 所垄断。
碳化硅外延片,是指在原有碳化硅衬底 上生长了一层有一定要求的、与衬底晶相同的单晶薄膜(外延层)的碳化硅片。外延生长主要使用 CVD(Chemical Vapor Deposition,化学气相沉积)设备或者 MBE(Molecular Beam Epitaxy,分子束外延)设备。由于碳化硅器件是直接在外延层制造,外延质量的好坏直接影响了器件的性能和良率,随着器件需求耐压性能的不断提高,对应的外延层厚度就越厚,控制难度也就越高。一般电压在 600V 左右时,所需要的外延层厚度约在 6 微米左右;电压在 1200-1700V 之间时,所需要的外延层厚度就达到 10-15 微米。如果电压达到一万伏以上时,可能就需要 100 微米以上的外延层厚度。而随着外延层厚度的不断增加,对厚度和电阻率均匀性以及缺陷密度的控制就变得愈发困难。
SiC器件:国际上600~1700V SiC SBD、MOSFET已经实现产业化,主流产品耐压水平在1200V以下,封装形式以TO封装为主。价格方面,国际上的SiC产品价格是对应Si产品的5~6倍,正以每年10%的速度下降,随着上游材料器件纷纷扩产上线,未来2~3年后市场供应加大,价格将进一步下降,预计价格达到对应Si产品2~3倍时,由系统成本减少和性能提升带来的优势将推动SiC逐步占领Si器件的市场空间。
传统封装基于硅基,三代半导体材料具有全新设计。若将传统硅基封装结构用于宽禁带半导体功率器件时,会在频率、散热、可靠性等方面带来新的问题与挑战。SiC 功率器件对寄生电容和寄生电感更加敏感。相比于 Si 器件 SiC 功率芯片的开 关速度更快,这会对驱动电压的波形带来过冲和震荡,引起开关损耗的增加,严重时甚至会引起功率器件的误开关。此外 SiC 功率器件工作温度更高,对散热的 要求也更高。
宽禁带半导体功率封装领域研发出多种不同结构。传统 Si 基功率模块封装不再适 用。针对传统 Si 基功率模块封装存在寄生参数过高,散热效率差的问题,SiC 功 率模块封装在结构上采用了无引线互连(wireless interconnection)和双面散热 (double-side cooling)技术,同时选用了导热系数更好的衬底材料,并尝试在模 块结构中集成去耦电容、温度/电流传感器以及驱动电路等,研发出了多种不同的模块封装技术。而且在SiC器件制造存在较高的技术壁垒,生产成本很高。
碳化硅器件是通过 CVD 在碳化硅衬底上叠层外延膜,经过清洗、氧化、光刻、刻蚀、去光阻、离子注入、化学气相沉积沉淀氮化硅、抛光、溅镀、后加工等步骤后在 SiC 单晶基板上形成元件结构所得。其中,SiC 功率器件主要包括 SiC 二极管、SiC 晶体管和 SiC 功率模块。受制于上游材料生产速度慢、良品率低等原因,碳化硅器件具有较高制造成本。
此外,碳化硅器件制造具有一定技术难度:
1)需要开发与碳化硅材料特性吻合的特定工艺,如:SiC 具有高熔点使传统热扩散失效,需要采用离子注入掺杂法,并精准控制温度、升温速率、持续时间、气体流量等参数;SiC 对化学溶剂具有惰性,应采用干刻蚀等方法,并优化和开发掩膜材料、气体混合物、侧壁斜率的控制、蚀刻速率、侧壁粗糙度等;
2)碳化硅晶片上金属电极的制造要求接触电阻低于 10- 5Ω2,符合要求的电极材料 Ni 和 Al 在 100℃ 以上时具有较差热稳定性,但具有较好热稳定性的 Al/Ni/W/Au 复合电极材料接触比电阻高 10- 3Ω2;
3)SiC 切割磨损高,SiC 硬度仅次于金刚石,对切割、研磨、抛光等技术提出了更高的要求。
而且,沟槽型碳化硅功率器件具有更大制造难度。根据器件结构的不同,碳化硅功率器件主要可以分为平面型器件和沟槽型器件。平面型碳化硅功率器件具有较好的单位一致性,制作工艺简单,但易产生JFET 效应,具有较高的寄生电容和通态电 阻。相较于平面型器件,沟槽型碳化硅功率器件单位一致性较低,具有更复杂的制作工艺,但沟槽结构有利于增加器件单位密度,不易产生 JFET 效应,有利于解 决沟道迁移率低等问题,具有导通电阻小、寄生电容小、开关能耗低等优良性能,具有显著的成本优势和性能优势,已成为碳化硅功率器件发展的主流方向。根据 Rohm 官网,ROHM Gen3 结构(Gen1 Trench 结构)仅为 Gen2(Plannar2)芯片 面积的 75%,且同一芯片尺寸下 ROHM Gen3 结构导通电阻降低 50%。
碳化硅衬底、外延、前段、研发费用和其他分别在碳化硅器 件制造成本中占比 47%,23%,19%,6%,5%。
最后我们再着重分解一下碳化硅产业链中衬底的技术壁垒。
碳化硅衬底生产过程与硅基衬底类似,但是难度更大。
碳化硅衬底的制作流程一般包括原料合成、晶体生长、晶锭加工、晶棒切割、晶片研磨、抛光、清洗等环节。
其中晶体生长阶段为整个流程的核心,该步骤决定了碳化硅衬底的电学性质。
碳化硅材料在一般条件下很难液相生长,如今市场流行的气相生长法,生长温度在 2300℃以上,而且需要精确调控生长温度,整个操作过程几乎难以观测,稍有差错就会导致产品报废。相比之下,硅材料只需要 1600℃,要求低很多。制备碳化硅衬底还面临长晶速度慢,晶型要求高等困难。碳化硅晶圆生长约需要 7 至 10 天,而硅棒拉晶只需要 2 天半。而且碳化硅是硬度仅次于金刚石的材料,切割、研磨、抛光时候也会损失掉的很多,产出比只有 60%。
我们知道碳化硅衬底的尺寸做大是趋势,随着尺寸不断增大,扩径技术的要求也越来越高。需要综合多方面的技术控制要素,才能实现晶体的迭代扩径生长。
来源:安信证券、先进半导体材料

报告订购咨询


电话:18676695257

邮件:service@yilanzhong.com

一览众咨询电动汽车报告

《2022-2027年中国新能源汽车市场调研投资前景报告》
《2022-2027年中国新能源物流车市场调研投资前景报告》
《2022-2027年电动工程机械市场调研及投资前景报告》
《2022-2027年电动卡车市场调研及投资前景报告》
《2022-2027年电动重卡市场调研及投资前景报告》
《2022-2027年电动叉车市场调研及投资前景报告》
《2022-2027年新能源汽车动力电池及BMS市场及企业调研报告》
《2022-2027年全球及中国固态电池市场及企业调研报告》
《2022-2027年中国新能源汽车充电设施市场调研及投资前景报告》
《2022-2027年中国新能源汽车充电枪市场及企业调研报告》
《2022-2027年中国新能源汽车充电模块市场及企业调研报告》
《2022-2027年中国新能源汽车换电产业链调研及投资前景报告》
《2022-2027年中国低速电动汽车市场调研及投资前景报告》
《2022-2027年动力电池回收及利用市场前景及投资报告》

一览众电动零部件报告

《2022-2027年新能源汽车高压连接器市场及企业调研报告》
《2022-2027年新能源汽车高压继电器市场及企业调研报告》
《2022-2027年新能源汽车高压熔断器市场及企业调研报告》
《2022-2027年新能源汽车电驱动市场及企业调研报告》
《2022-2027年新能源汽车电机市场及企业调研报告》
《2022-2027年动力电池结构件行业调研及投资潜力报告》
《2022-2027年新能源汽车汇流排行业调研及投资潜力报告》
《2022-2027年新能源汽车驱动电机绝缘材料市场及企业调研报告》
《2022-2027年新能源汽车薄膜电容器市场及企业调研报告》
《2022-2027年新能源汽车高压配电盒(PDU)市场及企业调研报告》
《2022-2027年新能源汽车车载充电机(OBC)市场及企业调研报告》 
《2022-2027年新能源汽车整车控制器(VCU)市场及企业调研报告》
《2022-2027年新能源汽车DC-DC转换器市场及企业调研报告》 
《2022-2027年新能源汽车小三电市场及企业调研报告》 
《2022-2027年新能源汽车高压线束市场及企业调研报告》
《2022-2027年新能源汽车热管理市场及企业调研报告》
《2022-2027年新能源汽车电子水泵市场及企业调研报告》
《2022-2027年新能源汽车电子膨胀阀市场及企业调研报告》
《2022-2027年新能源汽车动力电池液冷板市场及企业调研报告》
《2022-2027年新能源汽车电动空调市场及企业调研报告》
《2022-2027年新能源汽车IGBT市场及产业链企业调研报告》
《2022-2027年汽车启停电源市场及企业调研报告》
《2022-2027年汽车48V系统市场及企业调研报告》

一览众汽车智能化、汽车电子报告

《2022-2027年全球及中国自动驾驶市场调研及投资前景报告》
《2022-2027年全球及中国ADAS市场投资前景报告》
《2022-2027年全球及中国车联网市场调研及投资前景报告》
《2022-2027年全球及中国汽车传感器市场调研及投资前景报告》
《2022-2027年全球及中国汽车芯片产业链市场调研及投资前景报告》
《2022-2027年全球及中国智能座舱市场调研及投资前景报告》
《2022-2027年全球及中国自动泊车市场调研及投资前景报告》
《2022-2027年低速无人驾驶汽车市场调研及投资前景报告》
《2022-2027年汽车功率半导体市场调研及投资前景报告》
《2022-2027年车载语音市场调研及投资前景报告》
《2022-2027年车载显示市场调研及投资前景报告》
《2022-2027年汽车毫米波雷达产业链调研及投资前景报告》
《2022-2027年汽车域控制器产业链调研及投资前景报告》

一览众氢燃料报告

《2022-2027年氢能产业链市场调研及投资前景报告》
《2022-2027年氢燃料汽车市场调研及投资前景报告》
《2022-2027年氢燃料电池系统市场调研及投资前景报告》
《2022-2027年氢燃料电池催化剂市场调研及投资前景报告》
《2022-2027年氢燃料电池质子交换膜市场调研及投资前景报告》
《2022-2027年加氢站产业链市场调研及投资前景报告》
加入社群
加入“一览众车”新能源汽车、智能驾驶产业微信群,扫以下二维码加群主微信申请入群。添加好友时请注明(姓名-公司-职位)


一览众车 · 一览众咨询

深圳一览众信息咨询有限公司(简称“一览众咨询”)是国内新兴产业研究咨询及市场调研机构。公司专注于汽车产业链、新能源汽车、智能汽车等领域市场研究及咨询。经过多年的发展,公司在整车及零部件领域、汽车电动化、智能化等领域积累较丰富的行业经验及客户资源,是行业权威的第三方市场研究咨询机构。
公司业务市场调研终端市场监测竞争对手调查产业规划

电话

18676695257

邮箱

service@yilanzhong.com

- 扫码关注《一览众车》

- 领域:汽车及零部件、电动汽车、三电、智能汽车、汽车电子

一览众车 汽车产业资讯、数据及研究报告发布平台。
评论
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 96浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 97浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 84浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 111浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 98浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 79浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 93浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 113浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 106浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 101浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 118浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 88浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 95浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦