碳化硅(SiC)产业技术难点与突破

一览众车 2023-06-25 11:50

2023年电动智能汽车行业报告汇总(点击进入)

碳化硅芯片不仅是一个新风口,也是一个很大的挑战,那么我们来碳化硅技术壁垒分析下碳化硅技术壁垒是什么?碳化硅技术壁垒有哪些?
1) 第一代半导体材料以传统的硅(Si)和锗(Ge)为代表,是集成电路制造的基础,广泛应用于低压、低频、低功率的晶体管和探测器中,90%以上的半导体产品 是用硅基材料制作的;
2) 第二代半导体材料以砷化镓(GaAs)、磷化铟(InP)和磷化镓(GaP)为代表, 相对硅基器件具有高频、高速的光电性能,广泛应用于光电子和微电子领域;
3) 第三代半导体材料以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚 石(C)、氮化铝(AlN)等新兴材料为代表
碳化硅是第三代半导体产业发展的重要基础材料,碳化硅功率器件以其优异的耐高压、耐高温、低损耗等性能,能够有效满足电力电子系统的高效率、小型化和轻量化要求。
因其优越的物理性能:高禁带宽度(对应高击穿电场和高功率密度)、高电导率、高热导率,有望成为未来最被广泛使用的制作半导体芯片的基础材料。特别是在新能源汽车、光伏发电、轨道交通、智能电网等领域具有明显优势。
碳化硅技术壁垒是什么?碳化硅技术壁垒有哪些?
SiC 生产过程分为 SiC 单晶生长、外延层生长及器件制造三大步骤,对应的是产业链衬底、外延、器件与模组四大环节。
主流制造衬底的方式首先以物理气相升华法,在高温真空环境下将粉料升华,通过温场的控制在籽晶表面生 长出碳化硅晶体。以碳化硅晶片为衬底,使用化学气相沉积法,在晶片上淀积一层单晶形成外延片。其中,在导电型碳化硅衬底上生长碳化硅外延层,可制成功率器件,主要应用于电动车、光伏等领域;在半绝缘型碳化硅衬底上生长氮化镓 外延层,可进一步制成射频器件,应用于 5G 通讯等领域。
就目前而言,碳化硅产业链中碳化硅衬底的技术壁垒最高,碳化硅衬底生产难度最高。
SiC的生产瓶颈尚未完全彻底的解决,原料晶柱的质量不稳定存在良率问题,这就导致了SiC器件的成本过高。硅材料长晶平均只要3天即可长成一根晶棒,但碳化硅晶棒则需要一周,一般的硅晶棒可以长200公分的长,但一根碳化硅的晶棒只能长出2公分。而且SiC本身属于硬脆性材料,由其制成的晶圆,在使用传统的机械式切割晶圆划片时,极易产生崩边,影响产品良率及可靠性。SiC基板与传统的硅晶锭有很大不同,从设备、工艺、处理到切割的一切都需要进行开发,以处理碳化硅。
碳化硅产业链主要分为衬底、外延、器件和应用四大环节,衬底材料是产业链的基础,外延材料是器件制造的关键,器件是产业链的核心,应用是产业发展的动力。产业上游利用原材料通过物 理气相升华法等方法制成衬底材料,再利用化学气相沉积法等方法生长外延材料, 产业中游基于上游材料制成射频器件、功率器件等器件,最终应用于下游 5G 通信、电动汽车、轨道交通等。其中,衬底和外延共占产业链成本 60%,是产业链主要价值所在。
SiC衬底:SiC晶体通常用Lely法制造,国际主流产品正从4英寸向6英寸过渡,且已经开发出8英寸导电型衬底产品,国内衬底以4英寸为主。由于现有的6英寸的硅晶圆产线可以升级改造用于生产SiC器件,所以6英寸SiC衬底的高市占率将维持较长时间。
碳化硅衬底工艺复杂,制作难度大。碳化硅衬底是一种由碳和硅两种元素组成的 化合物半导体单晶材料。目前行业内主要以高纯碳粉、 高纯硅粉为原料合成碳化 硅粉,在特殊温场下,采用成熟的物理气相传输法(PVT 法),在晶体生长炉中 生长不同尺寸的碳化硅晶锭,最后经过加工、切割、研磨、抛光、清洗等多道工 序产出碳化硅衬底。
稳定量产性能稳定的高品质碳化硅晶片的技术难点有:
1)由于晶体需要在 2000℃以上的高温密闭环境生长,对控温要求极高;
2)由于碳化硅存在 200 多种晶体结构,但只有少数几种结构的单晶型碳化硅才是 所需的半导体材料,在晶体生长过程中需要精确控制硅碳比、生长温度梯度、晶 体生长速率以及气流气压等参数;
3)气相传输法下,碳化硅晶体生长的扩径技术难度极大;
4)碳化硅硬度与金刚石接近,切割、研磨、抛光技术难度大。
SiC外延:通常用化学气相沉积(CVD)方法制造,根据不同的掺杂类型,分为n型、p型外延片。国内瀚天天成、东莞天域已能提供4寸/6寸SiC外延片。对于SiC外延来说,高压领域控制难,SiC外延质量对SiC器件影响较大。而且外延设备被行业四大龙头企业 Axitron、 LPE、TEL 和 Nuflare 所垄断。
碳化硅外延片,是指在原有碳化硅衬底 上生长了一层有一定要求的、与衬底晶相同的单晶薄膜(外延层)的碳化硅片。外延生长主要使用 CVD(Chemical Vapor Deposition,化学气相沉积)设备或者 MBE(Molecular Beam Epitaxy,分子束外延)设备。由于碳化硅器件是直接在外延层制造,外延质量的好坏直接影响了器件的性能和良率,随着器件需求耐压性能的不断提高,对应的外延层厚度就越厚,控制难度也就越高。一般电压在 600V 左右时,所需要的外延层厚度约在 6 微米左右;电压在 1200-1700V 之间时,所需要的外延层厚度就达到 10-15 微米。如果电压达到一万伏以上时,可能就需要 100 微米以上的外延层厚度。而随着外延层厚度的不断增加,对厚度和电阻率均匀性以及缺陷密度的控制就变得愈发困难。
SiC器件:国际上600~1700V SiC SBD、MOSFET已经实现产业化,主流产品耐压水平在1200V以下,封装形式以TO封装为主。价格方面,国际上的SiC产品价格是对应Si产品的5~6倍,正以每年10%的速度下降,随着上游材料器件纷纷扩产上线,未来2~3年后市场供应加大,价格将进一步下降,预计价格达到对应Si产品2~3倍时,由系统成本减少和性能提升带来的优势将推动SiC逐步占领Si器件的市场空间。
传统封装基于硅基,三代半导体材料具有全新设计。若将传统硅基封装结构用于宽禁带半导体功率器件时,会在频率、散热、可靠性等方面带来新的问题与挑战。SiC 功率器件对寄生电容和寄生电感更加敏感。相比于 Si 器件 SiC 功率芯片的开 关速度更快,这会对驱动电压的波形带来过冲和震荡,引起开关损耗的增加,严重时甚至会引起功率器件的误开关。此外 SiC 功率器件工作温度更高,对散热的 要求也更高。
宽禁带半导体功率封装领域研发出多种不同结构。传统 Si 基功率模块封装不再适 用。针对传统 Si 基功率模块封装存在寄生参数过高,散热效率差的问题,SiC 功 率模块封装在结构上采用了无引线互连(wireless interconnection)和双面散热 (double-side cooling)技术,同时选用了导热系数更好的衬底材料,并尝试在模 块结构中集成去耦电容、温度/电流传感器以及驱动电路等,研发出了多种不同的模块封装技术。而且在SiC器件制造存在较高的技术壁垒,生产成本很高。
碳化硅器件是通过 CVD 在碳化硅衬底上叠层外延膜,经过清洗、氧化、光刻、刻蚀、去光阻、离子注入、化学气相沉积沉淀氮化硅、抛光、溅镀、后加工等步骤后在 SiC 单晶基板上形成元件结构所得。其中,SiC 功率器件主要包括 SiC 二极管、SiC 晶体管和 SiC 功率模块。受制于上游材料生产速度慢、良品率低等原因,碳化硅器件具有较高制造成本。
此外,碳化硅器件制造具有一定技术难度:
1)需要开发与碳化硅材料特性吻合的特定工艺,如:SiC 具有高熔点使传统热扩散失效,需要采用离子注入掺杂法,并精准控制温度、升温速率、持续时间、气体流量等参数;SiC 对化学溶剂具有惰性,应采用干刻蚀等方法,并优化和开发掩膜材料、气体混合物、侧壁斜率的控制、蚀刻速率、侧壁粗糙度等;
2)碳化硅晶片上金属电极的制造要求接触电阻低于 10- 5Ω2,符合要求的电极材料 Ni 和 Al 在 100℃ 以上时具有较差热稳定性,但具有较好热稳定性的 Al/Ni/W/Au 复合电极材料接触比电阻高 10- 3Ω2;
3)SiC 切割磨损高,SiC 硬度仅次于金刚石,对切割、研磨、抛光等技术提出了更高的要求。
而且,沟槽型碳化硅功率器件具有更大制造难度。根据器件结构的不同,碳化硅功率器件主要可以分为平面型器件和沟槽型器件。平面型碳化硅功率器件具有较好的单位一致性,制作工艺简单,但易产生JFET 效应,具有较高的寄生电容和通态电 阻。相较于平面型器件,沟槽型碳化硅功率器件单位一致性较低,具有更复杂的制作工艺,但沟槽结构有利于增加器件单位密度,不易产生 JFET 效应,有利于解 决沟道迁移率低等问题,具有导通电阻小、寄生电容小、开关能耗低等优良性能,具有显著的成本优势和性能优势,已成为碳化硅功率器件发展的主流方向。根据 Rohm 官网,ROHM Gen3 结构(Gen1 Trench 结构)仅为 Gen2(Plannar2)芯片 面积的 75%,且同一芯片尺寸下 ROHM Gen3 结构导通电阻降低 50%。
碳化硅衬底、外延、前段、研发费用和其他分别在碳化硅器 件制造成本中占比 47%,23%,19%,6%,5%。
最后我们再着重分解一下碳化硅产业链中衬底的技术壁垒。
碳化硅衬底生产过程与硅基衬底类似,但是难度更大。
碳化硅衬底的制作流程一般包括原料合成、晶体生长、晶锭加工、晶棒切割、晶片研磨、抛光、清洗等环节。
其中晶体生长阶段为整个流程的核心,该步骤决定了碳化硅衬底的电学性质。
碳化硅材料在一般条件下很难液相生长,如今市场流行的气相生长法,生长温度在 2300℃以上,而且需要精确调控生长温度,整个操作过程几乎难以观测,稍有差错就会导致产品报废。相比之下,硅材料只需要 1600℃,要求低很多。制备碳化硅衬底还面临长晶速度慢,晶型要求高等困难。碳化硅晶圆生长约需要 7 至 10 天,而硅棒拉晶只需要 2 天半。而且碳化硅是硬度仅次于金刚石的材料,切割、研磨、抛光时候也会损失掉的很多,产出比只有 60%。
我们知道碳化硅衬底的尺寸做大是趋势,随着尺寸不断增大,扩径技术的要求也越来越高。需要综合多方面的技术控制要素,才能实现晶体的迭代扩径生长。
来源:安信证券、先进半导体材料

报告订购咨询


电话:18676695257

邮件:service@yilanzhong.com

一览众咨询电动汽车报告

《2022-2027年中国新能源汽车市场调研投资前景报告》
《2022-2027年中国新能源物流车市场调研投资前景报告》
《2022-2027年电动工程机械市场调研及投资前景报告》
《2022-2027年电动卡车市场调研及投资前景报告》
《2022-2027年电动重卡市场调研及投资前景报告》
《2022-2027年电动叉车市场调研及投资前景报告》
《2022-2027年新能源汽车动力电池及BMS市场及企业调研报告》
《2022-2027年全球及中国固态电池市场及企业调研报告》
《2022-2027年中国新能源汽车充电设施市场调研及投资前景报告》
《2022-2027年中国新能源汽车充电枪市场及企业调研报告》
《2022-2027年中国新能源汽车充电模块市场及企业调研报告》
《2022-2027年中国新能源汽车换电产业链调研及投资前景报告》
《2022-2027年中国低速电动汽车市场调研及投资前景报告》
《2022-2027年动力电池回收及利用市场前景及投资报告》

一览众电动零部件报告

《2022-2027年新能源汽车高压连接器市场及企业调研报告》
《2022-2027年新能源汽车高压继电器市场及企业调研报告》
《2022-2027年新能源汽车高压熔断器市场及企业调研报告》
《2022-2027年新能源汽车电驱动市场及企业调研报告》
《2022-2027年新能源汽车电机市场及企业调研报告》
《2022-2027年动力电池结构件行业调研及投资潜力报告》
《2022-2027年新能源汽车汇流排行业调研及投资潜力报告》
《2022-2027年新能源汽车驱动电机绝缘材料市场及企业调研报告》
《2022-2027年新能源汽车薄膜电容器市场及企业调研报告》
《2022-2027年新能源汽车高压配电盒(PDU)市场及企业调研报告》
《2022-2027年新能源汽车车载充电机(OBC)市场及企业调研报告》 
《2022-2027年新能源汽车整车控制器(VCU)市场及企业调研报告》
《2022-2027年新能源汽车DC-DC转换器市场及企业调研报告》 
《2022-2027年新能源汽车小三电市场及企业调研报告》 
《2022-2027年新能源汽车高压线束市场及企业调研报告》
《2022-2027年新能源汽车热管理市场及企业调研报告》
《2022-2027年新能源汽车电子水泵市场及企业调研报告》
《2022-2027年新能源汽车电子膨胀阀市场及企业调研报告》
《2022-2027年新能源汽车动力电池液冷板市场及企业调研报告》
《2022-2027年新能源汽车电动空调市场及企业调研报告》
《2022-2027年新能源汽车IGBT市场及产业链企业调研报告》
《2022-2027年汽车启停电源市场及企业调研报告》
《2022-2027年汽车48V系统市场及企业调研报告》

一览众汽车智能化、汽车电子报告

《2022-2027年全球及中国自动驾驶市场调研及投资前景报告》
《2022-2027年全球及中国ADAS市场投资前景报告》
《2022-2027年全球及中国车联网市场调研及投资前景报告》
《2022-2027年全球及中国汽车传感器市场调研及投资前景报告》
《2022-2027年全球及中国汽车芯片产业链市场调研及投资前景报告》
《2022-2027年全球及中国智能座舱市场调研及投资前景报告》
《2022-2027年全球及中国自动泊车市场调研及投资前景报告》
《2022-2027年低速无人驾驶汽车市场调研及投资前景报告》
《2022-2027年汽车功率半导体市场调研及投资前景报告》
《2022-2027年车载语音市场调研及投资前景报告》
《2022-2027年车载显示市场调研及投资前景报告》
《2022-2027年汽车毫米波雷达产业链调研及投资前景报告》
《2022-2027年汽车域控制器产业链调研及投资前景报告》

一览众氢燃料报告

《2022-2027年氢能产业链市场调研及投资前景报告》
《2022-2027年氢燃料汽车市场调研及投资前景报告》
《2022-2027年氢燃料电池系统市场调研及投资前景报告》
《2022-2027年氢燃料电池催化剂市场调研及投资前景报告》
《2022-2027年氢燃料电池质子交换膜市场调研及投资前景报告》
《2022-2027年加氢站产业链市场调研及投资前景报告》
加入社群
加入“一览众车”新能源汽车、智能驾驶产业微信群,扫以下二维码加群主微信申请入群。添加好友时请注明(姓名-公司-职位)


一览众车 · 一览众咨询

深圳一览众信息咨询有限公司(简称“一览众咨询”)是国内新兴产业研究咨询及市场调研机构。公司专注于汽车产业链、新能源汽车、智能汽车等领域市场研究及咨询。经过多年的发展,公司在整车及零部件领域、汽车电动化、智能化等领域积累较丰富的行业经验及客户资源,是行业权威的第三方市场研究咨询机构。
公司业务市场调研终端市场监测竞争对手调查产业规划

电话

18676695257

邮箱

service@yilanzhong.com

- 扫码关注《一览众车》

- 领域:汽车及零部件、电动汽车、三电、智能汽车、汽车电子

一览众车 汽车产业资讯、数据及研究报告发布平台。
评论 (0)
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 381浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 141浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 232浏览
  • 2024年初,OpenAI公布的Sora AI视频生成模型,震撼了国产大模型行业。随后国产厂商集体发力视频大模型,快手发布视频生成大模型可灵,字节跳动发布豆包视频生成模型,正式打响了国内AI视频生成领域第一枪。众多企业匆忙入局,只为在这片新兴市场中抢占先机,却往往忽视了技术成熟度与应用规范的打磨。以社交平台上泛滥的 AI 伪造视频为例,全红婵家人被恶意仿冒博流量卖货,明星们也纷纷中招,刘晓庆、张馨予等均曾反馈有人在视频号上通过AI生成视频假冒她。这些伪造视频不仅严重侵犯他人权
    用户1742991715177 2025-05-05 23:08 79浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 186浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 48浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 376浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 209浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 196浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 289浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 129浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 75浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 257浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 118浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦