LTspice负压电荷泵的振荡器频率分析

原创 摩尔学堂 2023-06-19 09:23

继续深入研究一个可以产生负电源电压的简单SPICE电路,我们将考虑振荡器频率对系统性能参数的影响。

首先,我们来介绍一下图1所示的原理图,它向你展示了一个使用两个电容器、四个开关和一个方波来实现电压反转的LTspice版本的电路。这将是贯穿本文的示例原理图。

图1. 一个LTspice电路使用两个电容器、四个开关和一个方波来实现电压反转。

接下来,在对这一数字和我们的整体主题看得太深入之前,让我们简单回顾一下以前文章中的一些关键启示:

  • 倒置的电压是不调控的。它可以作为一个电源发挥作用,但输出电压将随着负载电流的增加而降低。

  • 如果我们采取措施降低有效输出电阻,输出电压对负载电流的敏感度会降低。

  • 模拟帮助我们确定在给定的负载电流下,电路是否能提供足够的输出电压幅度。

  • 电路的充电/放电周期导致了fOSC的输出纹波--即控制开关的方波频率。

  • 我们可以通过选择一个低ESR的输出电容,增加输出电容,或将输出电压通过线性稳压器来减少输出纹波。

     

到目前为止,我一直在使用500kHz的振荡器频率。你可能已经想知道我是如何得出这个数字的。为什么不是50千赫?或5兆赫?在这篇文章中,我们将重点讨论振荡器频率在系统中的作用,并讨论增加或减少fOSC的利弊。

初始振荡器频率--使用LTspice .param特性

一个好的起点是在100 kHz和1 MHz之间。我的直觉告诉我,对于这种类型的应用来说,这些是合理的频率,而且,我知道基于电感的切换器经常在这个范围内工作。

在任何情况下,当你用模拟方法工作时,改变频率是很容易的,所以没有必要太担心初始频率的问题。只要你从一个能准确表示电路基本功能的频率开始,你就能有效地开始优化过程,从而为特定的应用找到合适的频率。

顺便说一下,如果你利用LTspice的.param功能,改变频率就更加容易了(图2)。

图2. 图1中的原理图部分显示了LTspice中的.param功能。

在这里我有一个.param语句,我定义了振荡器的频率(Fosc)。逻辑高电平持续时间(Ton)和周期是由Fosc计算出来的,我在PULSE组件的字段中使用Ton和周期参数(不要忘记大括号!)。这个方便的技巧可以节省很多时间,而且在原理图上看到频率也很有帮助。我通常用频率而不是周期来思考问题,对我来说,试图反复将PULSE(0 5 1u 0 0 0.68u 1.36u)这样的东西解码成频率是有点令人厌烦。

负电压电荷泵的频率和能量

告知频率优化的基本现象是能量。在物理系统中,一般的规则是,更高的频率对应更高的能量。如果我们记住运动与能量直接相关--更确切地说,是动能,这在直觉上是有道理的。如果你打开和关闭一个电灯开关,你的手指在移动时就会消耗能量。如果你更频繁地按动开关--不改变任何其他东西--你必须在相同的时间内产生更多的手指运动;因此,你在每单位时间内消耗更多的能量,这就是力量的科学定义。同样,电压在5V和地面之间的 "运动 "涉及到能量的使用,如果这种电压转换发生得更频繁,那么每单位时间就需要更多能量。

负电压电荷泵中的振荡器是发生反转的基本能量来源。实际上,如果你回头看看我设计的SPICE原理图,振荡器位于其他组件之上,其输出分布在所有四个开关上,就好像它是一个电源。这就是我对这样一个系统中的振荡器的看法。基本上,它使用电压 "运动 "来转移和分配能量,有效地完成了将输入电压拉到地线以外并进入负电压区域的工作。

开关电容电路频率的优点和缺点

如果fOSC太低,开关系统就会缺乏动力,这表现为供应负载电流的能力下降,换句话说,就是输出电阻增大。事实上,一个理想化的开关电容电路的输出电阻与振荡器频率(以及C1的值)成反比。在这种情况下,"理想化 "意味着我们忽略了开关元件的电阻和电容器的等效串联电阻(ESR)。

从这里,你可以在图3中看到fOSC和ROUT之间的关系。

图3. 显示fOSC和ROUT之间关系的图。

在低负载电阻的情况下,随着振荡器频率的降低,稳态输出电压的幅度明显下降。

在图中,不同的颜色代表:

  • 绿色轨迹 = 100 kHz

  • 米色轨迹=500千赫

  • 红色轨迹=1MHz

另外,在这个模拟中,C1=1μF,C2=3μF。

如果fOSC太高,开关系统可以获得比它需要的更多的能量,整个电路仅仅为了维持运行而耗散更多的功率。更高的频率也更有可能产生有问题的电磁干扰(EMI)。

你可以通过提高振荡器的频率来减少输出纹波(图4)。

图4. 显示三个不同频率的纹波幅度的图。

上面的图显示了同一电路在三种不同振荡器频率下的纹波幅度。

  • 绿色痕迹 = 100 kHz

  • 米色轨迹 = 500 kHz

  • 红色痕迹=1兆赫

另外,对于这个模拟,C1=1μF,C2=3μF。

如果你真的需要最小化纹波,这是一个值得的技术,但在你采取任何行动之前,重要的是真正了解你的系统的电源要求。在放大的范围显示上看起来很糟糕的纹波可能对由该纹波电压供电的组件的性能没有任何有意义的影响,而且你不希望为了减少实际上没有损害操作的纹波而降低效率或加剧EMI问题。

综上所述,为开关电源选择一个振荡器频率是一个平衡的行为。仿真可以帮助你优化你的设计,你可以考虑用可变频率的振荡器建造一个原型。在任何情况下,请记住基本的权衡:较高的频率有利于性能,即较低的输出电阻和较低的纹波,较低的频率可以延长电池寿命。

本文编译自:ALLABOUTCIRCUITS

--------------------


今天小编带来了:ISSCC2023套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。

ISSCC2023完整资料领取方式如下   
识别关注下方公众号
公众号对话框输入 1425 
由于公众号后台资料容量有限
每份资料有效期为30天,过期会被更新删除
资料仅供个人学习使用,禁止分享与转发!
大家如果需要,请及时下载!

1、深入理解SerDes(Serializer-Deserializer)之一

2、深入理解SerDes(Serializer-Deserializer)之二

3、科普:深入理解SerDes(Serializer-Deserializer)之三

4、资深工程师的ESD设计经验分享

5、干货分享,ESD防护方法及设计要点!

6、科普来了,一篇看懂ESD(静电保护)原理和设计!

7、锁相环(PLL)基本原理 及常见构建模块

8、当锁相环无法锁定时,该怎么处理的呢?

9、高性能FPGA中的高速SERDES接口

10、什么是毫米波技术?它与其他低频技术相比有何特点?

11、如何根据数据表规格算出锁相环(PLL)中的相位噪声

12、了解模数转换器(ADC):解密分辨率和采样率

13、究竟什么是锁相环(PLL)

14、如何模拟一个锁相环

15、了解锁相环(PLL)瞬态响应

16、如何优化锁相环(PLL)的瞬态响应

17、如何设计和仿真一个优化的锁相环

18、锁相环(PLL) 倍频:瞬态响应和频率合成

19、了解SAR ADC

20、了解 Delta-Sigma ADC

21、什么是数字 IC 设计?

22、什么是模拟 IC 设计?

23、什么是射频集成电路设计?

24、学习射频设计:选择合适的射频收发器 IC

25、连续时间 Sigma-Delta ADC:“无混叠”ADC

26、了解电压基准 IC 的噪声性能

27、数字还是模拟?I和Q的合并和分离应该怎么做?

28、良好通信链路性能的要求:IQ 调制和解调

29、如何为系统仿真建模数据转换器?

30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)

31、使用有效位数 (ENOB) 对 ADC 进行建模

32、以太网供电 (PoE) 的保护建议

33、保护高速接口的设计技巧

34、保护低速接口和电源电路设计技巧

35、使用互调多项式和有效位数对 ADC 进行建模

36、向 ADC 模型和 DAC 建模添加低通滤波器

37、揭秘芯片的内部设计原理和结构

38、Delta-Sigma ADCs中的噪声简介(一)

39、Delta-Sigma ADCs中的噪声简介(二)

40、Delta-Sigma ADCs 中的噪声简介(三)

41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)

42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)

43、放大器噪声对 Delta-Sigma ADCs 的影响(一)

44、放大器噪声对 Delta-Sigma ADCs 的影响(二)

45、参考电压噪声如何影响 Delta Sigma ADCs

46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声

47、时钟信号如何影响精密ADC

48、了解电源噪声如何影响 Delta-Sigma ADCs

49、运算放大器简介和特性

50、使用 Delta-Sigma ADCs 降低电源噪声的影响

51、如何设计带有运算放大器的精密电流泵

52锁定放大器的基本原理

53了解锁定放大器的类型和相关的噪声源

54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术

55、干货!《实用的RFIC技术》课程讲义

56、如何在您的下一个 PCB 设计中消除反射噪声

57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!   

58、帮助你了解 SerDes!                                    

往期精彩课程分享

1、免费公开课ISCAS 2015 :The Future of Radios_ Behzad Razavi

2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)

3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)

4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs

5免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)

6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)

7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动

8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi

9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块

10、免费公开课:ISSCC2020-小数N分频数字锁相环设计

11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)

12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础

13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础

14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)

15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)

16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe

17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)





专注于半导体人才培训,在线学习服务平台!


人才招聘服务平台

摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 65浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 189浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 184浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 118浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 105浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 156浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 123浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 68浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 502浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 76浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦