图解数字电路基础

电源研发精英圈 2023-06-17 20:00

1、数字电路是什么?

数字电路是利用电源电压的高电平和低电平分别表示1和0,进而实现信息的表达。

模拟信号:随时间连续变化的信号。处理模拟信号的电路就是模拟电路。

数字信号:随时间不连续变化的信号,离散变化。处理数字信号的电路就是数字电路。



2、数值表达


我们常用的数值表达方式是十进制,但在数字电路中采用的是二进制,如下图所示:

有符号二进制:


3、比特和字节

比特:二进制中的一个数字位称为 binary digit,用bit表示,常简写为“b”

字节:1字节等于8比特,用byte表示,常简写为“B”。

4、1K 字节理解的差异


K、M、G、T 是表示大数据量时常用的单位。1K 的大小有 1000(10 的 3 次方)和 1024(2 的 10 次方)两种计数方法。

通常,衡量计算机内存和网络数据包大小时,1K 相当于 1024 比特。而在硬盘等存储器的标签上记述的尺寸或物理学中的 1K 相当于 1000。


5、反码与补码


反码 = 原码所有bit位取反

补码 = 反码+1

比如原码=0101,则反码=1010,补码=1011

6、MOSFET 的结构

目前数字电路基本上都是由 MOSFET 场效应管构成的。MOSFET 是一种在施加电压后可以像开关一样工作的半导体器件。MOSFET 有 P 型 MOSFET 和 N 型 MOSFET 两种。



7、逻辑运算与基本逻辑门电路


(1)逻辑运算使用 AND(逻辑与)、OR(逻辑或)、NOT(逻辑非)三种基本运算组合来实现各种运算。

(2)CMOS 基本逻辑门电路


8、存储元件


锁存器(Latch)就是一种存储元件,具有像闩锁一样锁住并维持数据的特性,通过组合基本的逻辑门可以实现。

(1)最简单的锁存器

由一个2输入的AND门组成,将一路输入与输出连接形成回路。


(2)D锁存器(Data Latch,D-Latch,数据锁存器)

由4个NAND组成,输入信号有D(DATA)和E(ENABLE),输出信号有Q和/Q。

工作逻辑:E 为 0 时保持前一个数据,E 为 1 时将输入 D 的数据输出到 Q。E为1时输入的 D 直接通过 Q 输出。

D锁存器构成以及电路组成如下:


真值表:

(3)D触发器

D 锁存器和 NOT 门组合,可以实现依据时钟信号同步并保存数据的 D 触发器。

D 触发器有 D(Data) 和 C(Clock) 两个输入信号,Q 和两个输出信号。

D触发器电路组合如下图所示。

D触发器的电路符号:


工作逻辑:当 D 触 发器的 C 为 0 时,前端 D 锁存器输出信号 D 的值,后端 D 锁存器保持之前的数据。当 C 为 1 时,前端 D 锁存器保持之前的数据,后端 D 锁存器将前端 D 锁存器保持的数据直接通过 Q 输出。



D触发器由于原理和构造简单,广泛应用于同步电路。

扩展知识:《建立时间与保持时间》

D 触发器是由时钟信号的边沿来触发数据的存储动作的。因此,需要在时钟沿前后一段时间内将输入信号稳定下来。如果在时钟变化时输入信号也在变化,很可能无法正确存储数据。因此,为了让 D 触发器正确存储数据,需要有建立时间(setup time)和保持时间(hold time)两个基本条件。

建立时间是在时钟变化前必须稳定输入信号的时间,而保持时间是时钟变化后必须稳定输入信号的时间。

同时遵守建立时间和保持时间,就可以让 D 触发器正确的存储数据。具体的时序图如下所示:



9、组合逻辑电路和时序逻辑电路

数字电路可以分为组逻辑合电路和时序逻辑电路两种。

(1)组合逻辑电路

组合逻辑电路是指输出值仅由输入信号的状态决定的电路,不依赖于过去的输入。从电路组成上来看,只包含门电路,不包含存储元件。

(2)时序逻辑电路

时序逻辑电路是指输出值同时依赖于现在和过去输入信号的逻辑电路。

从电路组成上来看,时序逻辑电路等于组合逻辑电路+存储电路。

从工作逻辑上来看,输出状态必须反馈到输入端,与输入信号共同决定组合逻辑的输出。




动画演示与门,或门,非门


“非”门电路


先来说最简单的门电路非门,“非”乃“反”也,在电路中起到取反的作用在电路中即为有0出1,有1出0



“与”门电路

与门电路只有当条件全都具备时才会有所动作,在电路中即有0出0,全1出1




“或”门电路

或门电路只要符合一个条件时就会有所动作,在电路中即有1出1,全0出0




“与非”门电路

与非门电路就是与门和非门所组成的简单组合门电路,在电路中即有0出1,全1出0




“或非”门电路

或非门电路就是或门和非门所组成的简单组合门电路,在电路中即有1出0,全0出1



“异或”门电路

异或门电路内部是由与门,或门,非门所共同组成的组合门电路,在电路中即两输入信号相同出0,不同出1


“同或”门电路


同或门电路也被称为异或非门电路,和异或门电路基本相同,只不过在输出端加了一个非门,所以作用与异或门相反,在电路中即两输入信号相同出1,不同出0





最后总结



END







免责声明:本文转自网络,版权归原作者所有,如涉及作品版权问题,请及时与我们联系,谢谢!


加入粉丝交流群


张飞实战电子为公众号的各位粉丝,开通了专属学习交流群,想要加群学习讨论/领取文档资料的同学都可以扫描图中运营二维码一键加入哦~ 

(广告、同行勿入)

电源研发精英圈 开关电源研发工程师精英汇集的平台!我们将定期发送开关电源技术资料与行业新闻,欢迎各位关注。(关键字: 电源开发工程师,LED电源,LED驱动电源,电源工程师, 电源学习,电源知识,电源技术,线性电源,逆变电源,电源芯片,电源模块,电源系统)
评论 (0)
  • 在设备间通信日益增长的需求中,对于十几米甚至更长距离的高速外设数据传输变得尤为重要。RS-232C接口,凭借其仅需简单的接收、发送及地线配置,以及成本效益高的双绞线连接,凭借其卓越性能,成为了连接通信接口芯片的关键纽带。为了在这种长距离高速通信场景下实现线路的可靠隔离,并有效抵御外部噪声对通信信号的干扰,虽然上一期介绍的晶体管类型输出系列光耦能够满足100kbps速率的隔离传输需求,但面对更高的速率稳定性和性能要求,业界更倾向于采用速率可达300Kbps的KL6N138和KL6N139达林顿高速
    晶台光耦 2025-02-14 13:40 35浏览
  • 《哪吒2》票房破百亿背后的科技密码:解码中国动画产业的技术跃迁与制造底气2024年夏季,国产动画电影《哪吒2》以雷霆之势席卷全球院线,不仅成为中国影史第二部票房突破百亿的现象级作品,更以多项技术突破刷新行业纪录。这些成就背后,不仅是中国动画工业的崛起,更是中国科技创新与高端制造业协同突破的缩影。作为深耕PCB行业多年的捷多邦小编,今天带您从技术视角,解读这场银幕奇迹背后的制造密码。一、从“数字造神”到“算力革命”:动画技术背后的硬核突破《哪吒2》的视觉革命始于AI工业化管道的深度应用。影片中大量
    捷多邦 2025-02-15 17:57 346浏览
  • 文心一言免费对于创业来说是一个很大的机遇,加油!虽然是一个很大的挑战,但是好处还是很大的。文心一言的免费开放为创业者提供了一个低成本甚至零成本使用先进人工智能技术的机会。在以往,创业者若想在项目中融入AI技术,往往需要支付高昂的研发或授权费用。而现在,他们可以直接利用文心一言的强大功能,如语言理解、生成能力、深度搜索等,来构建自己的产品或服务,从而显著降低创业成本。文心一言的全面免费开放为创业者提供了广阔的创新空间。创业者可以基于文心一言开发出各种创新的应用和服务,满足市场的多样化需求。例如,利
    curton 2025-02-14 13:37 254浏览
  • 文心一言准备免费,说实话,这个是好事情,但是他也会产生非常大的影响,总体来说,对技术的发展还是起到积极的作用。文心新苑为什么要免费呢?无非就是市场的原因,绝对不是文心一言不想利用这个AI赚钱。我分析下原因:1、市场竞争:在人工智能技术高速发展的背景下,各类AI产品层出不穷,市场竞争日益激烈。尤其是DEEPSEEK的出现,真是的非常重大的一个事件,作为同类产品,文心一言非常无奈的被迫的选择全面免费策略,旨在迅速提高用户量,争夺市场份额。通过免费使用,文心一言能够吸引更多用户,形成网络效应,进而提升
    curton 2025-02-14 10:30 390浏览
  •  探针台是半导体测试领域的重要设备,用于支撑和固定待测芯片,以便进行jing确的电气测试。在使用过程中,探针台可能会出现位置偏移,这时就需要进行复位操作。下面,我们将详细介绍探针台复位的zui简单三个步骤。  一、确定复位基准点复位操作的di一步是确定复位基准点。通常,探针台会配备有明确的复位标记或感应点。用户需要仔细查找并确认这些标记,确保复位操作的准确性。找到基准点后,将探针台移动到该位置附近,准备进行下一步操作。二、执行复位动作在确认基准点后,接下来需要执行复
    锦正茂科技 2025-02-15 09:36 57浏览
  • 导读:2025年1月6日,在 ChatGPT 诞生两周年之际,OpenAI 的核心人物 Sam Altman 回顾了一段波澜壮阔且充满挑战的历程。九年前,怀揣着对通用人工智能(AGI)的坚定信念,OpenAI 踏上征程。彼时,质疑声不绝于耳,多数人认为这毫无成功的可能。但他们未曾动摇,毅然投身这一充满未知的领域。直至 2022 年 ChatGPT 的推出,如同在科技领域投入巨石,引发轩然大波,开启了前所未有的发展态势。然而,荣耀背后是难以想象的艰难。围绕新技术构建公司,犹如在黑暗中摸索前行,每一
    用户1739588245528 2025-02-15 11:03 62浏览
  •  芯片设计中的软硬件接口概述作者: Insaf MelianeInsaf Meliane 是 Arteris 的产品管理和营销经理。在加入产品团队之前,她是一名现场应用经理,为客户提供复杂 SoC 设计集成支持。在加入 Arteris 之前,她曾在领先的半导体公司担任过其他设计和应用工程职务。Insaf 拥有法国格勒诺布尔国立高等电子与无线电工程学院微电子专业系统级芯片方面的工程学位。软硬件接口 (HSI) 在芯片设计中扮演着重要角色,用于将物理硬件与其对应软件连接起来。它为复杂的系统
    ArterisIP 2025-02-14 10:28 44浏览
  • 近日,紫光展锐蜂窝物联网芯片V8850荣获国密一级认证,标志着展锐V8850在安全能力方面获得权威认可,位居行业领先水平。这是紫光展锐继短距物联网芯片V5663在2020获得ARM PSA Level 2认证,蜂窝物联网芯片V8811在2021年获得ARM PSA Level 1 认证后,第三次荣获安全行业权威认证。荣获国密一级安全认证,意味着紫光展锐V8850能支持智能支付、共享经济、定位追踪、安防监控、智能表计、工业DTU、公网对讲,以及车载通信终端设备上的国密升级改造,可为移动支付、短信
    紫光展锐 2025-02-14 19:26 43浏览
  • NoC的下一步发展是什么?作者: Andy NightingaleAndy Nightingale 是 Arteris 产品管理和营销副总裁,拥有超过 37 年的高科技行业经验,其中包括在 Arm 担任各种工程和产品管理职位 23 年。当今的高端 SoC 在很大程度上依赖复杂的片上网络(NoC)技术来实现性能和可扩展性。随着 人工智能(AI)、高性能计算(HPC)和其他计算密集型应用的需求不断发展,设计下一代 SoC 将需要更智能、更高效的 NoC 解决方案来应对这些挑战。尽管这些进步带来了令人
    ArterisIP 2025-02-14 10:16 25浏览
  • 随着科技快速进步,蓝牙技术也在持续演化。Bluetooth LE Audio(低功耗蓝牙音讯)因其省电及音质提升等特性,俨然成为目前热门的音讯技术之一。对于经常性使用耳机、手机或笔电的人来说,音频传输的延迟性能不仅影响游戏体验,也同时影响着影音同步与通话质量。然而,由于目前市面上针对LE Audio延迟测试的工具和服务实属不多,厂商在验证设备性能往往面临到技术困难。有鉴于此,百佳泰所提供的专业延迟量测验证服务,可有效协助客户了解产品表现,从而提升市场竞争力!百佳泰技术小词典延迟指的是从声音讯号发
    百佳泰测试实验室 2025-02-14 10:38 48浏览
  • 电磁铁通电时会产生磁场,磁力随电流增强而增强,表现出吸引铁磁性物质的特性。电磁铁是一种能够产生磁场的装置,其特性在于可以通过通电来控制磁场的产生和消失。那么,当电磁铁通电时,它具体会表现出哪些特性和现象呢?一、产生磁场通电是电磁铁产生磁场的关键。当电流通过电磁铁的线圈时,线圈周围就会产生磁场。这个磁场与电流的大小和方向密切相关,电流越大,产生的磁场也越强。同时,磁场的方向可以通过改变电流的方向来改变,这是电磁铁灵活性的重要体现。二、磁力变化随着电流的增强,电磁铁产生的磁力也会相应增强。这种磁力的
    锦正茂科技 2025-02-15 09:59 66浏览
  • Thiele-Small参数:如何影响扬声器单体设计?想要设计一个高效能的音箱系统,关键在于了解扬声器单体的核心参数,这些参数将直接影响音箱系统的声学表现。而专为扬声器单体所设计的IEC 60268-5 标准便明确规范了扬声器参数的量测方法,让音箱设计者得已透过数据驱动的方式,精确地计算扬声器在不同频率范围内的性能表现,进而设计出符合需求的音箱产品。而这些关键参数,亦即Thiele-Small参数(TS参数),便为设计提供了基础参考数据。案例背景与面临的挑战以本次分享的客户个案为例,该客户是一家
    百佳泰测试实验室 2025-02-14 10:11 33浏览
  •                           春天来了,我们中国的传统节日--春节到了,随着国家富强,人们民族文化自信心的增强,这个中国年过的还挺热闹,挺红火。一段山村过新年的快乐时光,即兴而发赋了两首新诗。《渔家乐·山村新春》白发垂髫同喜乐,新春佳节意情奢。烟花璀璨腾空起,山村美景醉心涯。晓雾轻笼林野静,晚云淡抹岫峰斜。自然恩赐千般好,福满人间岁月嘉
    广州铁金刚 2025-02-17 15:59 34浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦