如何使用基于RaspberryPi的DDS信号发生器实现精确RF测试

原创 亚德诺半导体 2023-06-17 10:30

在涉及射频(RF)的硬件测试中,选择可配置、已校准的可靠信号源是其中最重要的方面之一。本文提供了基于Raspberry Pi的高度集成解决方案,其可用于合成RF信号发生器,输出DC至5.5 GHz的单一频率信号,输出功率范围为0 dBm至-40 dBm。所提出的系统基于直接数字频率合成(DDS)架构,并对其输出功率与频率特性进行了校准,可确保在整个工作频率范围中,输出功率保持在所需功率水平的±0.5 dB以内。


简介


RF信号发生器,尤其是微波频率的RF信号发生器,以前通常是基于锁相环(PLL)频率合成器来构建。PLL支持从低频参考信号生成稳定的高频信号。图1显示了一个基本PLL模型。该模型由反馈系统(其中包括一个包括一个电压控制振荡器(VCO)用于改变输出频率)、误差检测器(用于比较输入参考频率和输出频率)以及分频器组成。当分频器的输出频率和相位等于输入参考的频率和相位时,环路被认为处于锁定状态。

图1. 基本PLL模型

根据应用的不同,DDS架构作为频率合成器可能比PLL提供了一种更好的替代方案。图2显示了一个典型的基于DDS的信号发生器。调谐字应用于相位累加器,由后者确定输出斜坡的斜率。累加器的高位经过幅度正弦转换器,最终到达DAC。与PLL相比,DDS的架构具有明显的优势。例如,DDS数字相位累加器可实现比基于PLL的频率合成器更精细的输出频率调谐分辨率。

图2.基于DDS的典型信号发生器

PLL切换时间是其反馈环路建立时间和VCO响应时间的函数,由于自身性质的限制,其速度较慢,而DDS仅受数字处理延迟的限制,因此具有更快的切换速度。在电路板尺寸方面,DDS的面积更小,便于系统设计,许多硬件RF设计难题也迎刃而解。

一款基于DDS架构的完整DC至5.5 GHz正弦波信号发生器的总体系统设计。接下来将讨论矢量信号发生器架构及其规格。而后将重点讨论系统时钟,包括时钟参考要求以及时钟管理单元和矢量信号发生器之间的电路连接。也会涉及电源架构和系统布局,并进一步说明整体系统如何实现高功率效率和合理的散热性能。随后的"软件架构和校准"部分将围绕系统软件控制和校准展开讨论。该部分将解释软件提供的灵活控制以及如何校准输出功率。最后一部分将说明整体系统性能,包括系统相位噪声、校准输出功率和系统的热性能。
系统级架构和设计考量


A:系统及设计

图3所示系统是基于DDS架构的完整DC至5.5 GHz正弦波信号发生器。四开关DAC核心和集成输出放大器在整个工作频率范围内提供极低的失真,并配有50Ω的输出匹配终端。

板载时钟解决方案包括参考振荡器和PLL,因而无需外部时钟源。所有电源均来自Raspberry Pi平台板,其具有超高电源抑制比(PSRR)稳压器和无源滤波功能,可使大幅减小电源转换器对RF性能的影响。

图3.CN0511:基于RPI的频率合成RF信号发生器


图4.所用矢量信号发生器(AD9166)的功能框图


图5.ADF4372 RF8x输出级

图3所示架构可用于雷达、自动测试、任意波形发生器和单音信号发生器等各种应用。而本文中实现了单音信号发生器应用。以下小节将讨论CN0511包含的主要集成器件。

B:矢量信号发生器

如图4所示,所使用的DC至9 GHz矢量信号发生器包含一个6 GSPS(1倍不归零模式)DAC、8通道、12.5 Gbps JESD204B数据接口以及一个具有多个数控振荡器(NCO)的DDS。同时该器件是高度可配置的数字数据路径,包括插值滤波器、反SINC补偿和数字混频器,支持灵活的频谱规划。

图4所示系统利用DAC的48位可编程模数NCO以非常高的精度(43 μHz频率分辨率)实现了信号的数字频移。该DAC的NCO仅需要SPI写入接口速度达到100 MHz即可快速更新频率调谐字(FTW)。SPI还支持配置和监控该DAC中的各种功能模块。本设计未使用JESD通道,器件仅在NCO模式下使用。

图4中的矢量信号发生器集成了单端、50 Ω匹配的输出RF放大器,因此无需采用复杂的RF输出电路接口。表1显示了 AD9166的主要规格和在各种条件下的性能。

表1.AD9166主要规格

C:系统时钟

图2中的系统使用了ADF4372 PLL(见图5),这是一款集成VCO的宽带频率合成器,当与外部环路滤波器和外部参考频率一起使用时,可以作为小数N分频或整数N分频频率合成器。此外,VCO频率可进行1、2、4、8、16、32或64分频,因此用户可以在RF8x产生低至62.5 MHz的RF输出频率。

时钟源的质量(例如其相位噪声和杂散特性)以及其与高速DAC时钟输入的接口,会直接影响交流性能。因此,相位噪声和其他频谱内容将会被直接调制到输出信号上。为实现最佳整数边界杂散和相位噪声性能,ADF4372使用了单端参考输入信号,然后将其倍频以产生用于高速DAC的时钟,如图6所示。

图6.ADF4372和AD9166之间的电路连接

D:电源架构

CN0511的系统电源树如图7所示,基于系统负载要求将其效率提高到90%,分别使用了 LTM8045LTM4622ADP5073 开关稳压器,并选用 ADM7150ADM7154ADP1761等低压差线性稳压器(LDO)来为DAC、放大器、PLL和VCO供电,其有超低噪声和高PSRR性能,可实现最佳相位噪声性能。

使用电源时序控制器 LTC2928 来确保高速DAC按正确顺序上电,避免损坏其内部电路。该电源时序控制器IC可监测和管理四个电压轨,并具有控制各电压轨的上电时间和其他监控功能,其中包括欠压和过压监控与报告功能。

E:布线考虑

对于这种需要极高性能和较高输出频率的应用,PCB(印刷电路板)材料的选择会对结果有很大影响。图8显示了推荐的CN0511 PCB叠层,它在包含RF走线的层上使用Rogers 4350电介质材料,最大程度上减少3GHz以上的信号衰减,并确保在RF输出处获得最佳的信号完整性。


图7.系统电源树


图8.推荐的PCB横截面和叠层

热性能与PCB设计和工作环境直接相关。为改善设计的散热性能,在PCB散热焊盘上打了散热通孔。

软件架构和校准



A:软件控制

在任何涉及信号发生器的应用都希望能够轻松灵活地控制仪器设备。因为它只需要将一张带有Kuiper Linux镜像的SD卡插入Raspberry Pi,因而可以认为CN0511是即插即用的。Kuiper Linux镜像包含控制信号发生器所需的所有必要软件。有两种方法可改变输出功率和频率:使用PyADI-IIO模块写入代码,或使用IIO-Oscilloscope图形用户界面(GUI)输入所需的输出。

PyADI-IIO是ADI硬件的Python抽象模块,带有工业输入/输出(IIO)驱动程序。此模块为控制硬件提供了简单易用的Python方法和属性。通过非常简单的Python代码行即可控制该板,这些代码可以在本地或远程运行。可以使用简单的for循环和一些延迟来创建任何频率扫描,用于测试其他设备。

IIO-Oscilloscope是一个跨平台GUI应用程序,需要用户输入输出功率幅度和频率作为参数。

PyADI-IIO和IIO-Oscilloscope这两个模块均提供了结温传感器的输出:一个在PLL IC内,另一个在矢量信号发生器IC内。图9展示了这两个软件模块以及与CN0511板通信所需的其他组件(libAD9166、LibIIO和Linux内核)。图9中显示的libAD9166是在Kuiper镜像上预装的另一个库,用于准确控制输出功率,包含输出校准功率所需的C++代码,并特定使用于该板。关于如何实现校准的理论将在B节:输出功率校准中继续讨论。

图9.通过PyADI-IIO和IIO-Oscilloscope与设备通信所需的软件组件框图

B:输出功率校准

在信号发生器应用中,频带平坦度是一个关键参数。在该系统中,输出功率与频率的关系特性主要由矢量信号发生器的输出决定。随着频率提高,输出阻抗从其直流值开始减小。输出阻抗的这种变化以及负载处的任何阻抗失配都会直接影响输出功率。此外,可预测的sinc滚降也会影响输出功率的频率响应。图10讨论并显示了测得的未校准输出功率与频率的关系。为了克服这些不利因素,我们对输出功率与频率的关系进行了软件校准。

用于校正输出功率的旋钮包含了AD9166的两个寄存器:设置满量程电流的10位寄存器Ioutfs_reg(地址0x42和0x41)和设置满量程电流的16位寄存器Iout_reg(地址0x14E和0x14F)。这两个寄存器负责控制AD9166 DAC的输出电流,这也是AD9166放大器的输入(图3)。

Ioutfs_reg提供大约10 dBm的输出功率动态范围,这是用于调整图10所示不必要特性的理想值。

图10.输出功率与频率的关系:未校准的输出功率

从测量结果来看,每个PCB样片都显示出图10所示的相同形状特性,只是偏移存在差异。考虑到这一点,我们开发了两个校准例程。第一个校准程序只需执行一次,用于获取校准整个形状所需的参数,使其平坦化,;第二个程序则用于校正不同板之间的偏移误差,并作为每片板的生产测试运行。两个校准例程均通过输出测量、计算和基于计算的寄存器调整来完成。

第一个校准例程的主要设计思路如图11所示。首先,图10中的整个特性曲线被分成多个频率区间,这些区间可以用从fmin[x]到fmax[x]的线段来近似表示,其中x是区间的索引,x ∈ [0, 31],并且x为正整数。实际设计选择了31个区间,但为了更好地举例说明,图11a中只显示了三个区间。对于每个区间,需要获得两个常数:一个是用于偏移校正的Offset_correction(图11b);一个是用于增益校正的Gain_correction(图11c)。还需要存储参数fmin[x]以跟踪区间。

图11.校准例程的可视化举例:(a) 将特性曲线分成多个部分;(b) 对每个部分进行偏移校正;(c) 对每个部分进行斜率校正。

图12a为第一个校准例程的工作原理伪代码流程图。为完成此算法,需要使用非常精确的频谱分析仪来测量输出功率(使用Keysight E5052B/R&S FSUP)。第一个例程(图12a)产生的参数用于第二个校准例程,如图12b所示。

12.伪代码流程图:(a) 只运行一次的第一个校准例程;(b) 在每个CN0511板上运行的第二个校准例程。

第二个校准例程(图12b)是针对生产测试中每个PCB样片运行的,并为每个区间的Offset_correction参数增加同一常数。在第二个例程结束时,对于每个区间,修改的参数Offset_correction[x]、Gain_correction[x] 和fmin[x]都将存储在电路板的EEPROM中。当电路板工作时,这些参数将在软件中进一步使用。

为设置校准输出功率,软件使用公式1来计算调整频率fx处的输出功率的Ioutfs_reg寄存器值,以。fx是区间x内的频率:fx ∈ [Fmin[x], fmax[x]),fx为实正数,fmin[x]是索引为x的区间的最小频率。

如公式1所示,电路板上必须为每个x区间存储三个参数,以便进行输出校正:即Offset_correction[x]、Gain_correction[x]和fmin[x]。

系统性能


A:校准输出功率

图13显示了CN0511在几种不同输出功率水平下的宽带补偿频带平坦度。对于设置在0 dBm和-40 dBm之间的任何输出功率,从DC到5.5 GHz的整个频带内的精度为±0.5 dBm。

图13.校准输出功率与频率的关系

B:相位噪声

时钟源的质量以及其与AD9166时钟输入端的接口会直接影响相位噪声性能。在指定频率偏移处的相位噪声和杂散会被直接转为输出信号。图14显示了经过测量的单边带(SSB)相位噪声与频率偏移的关系。所有数据都是在输出功率设置为满量程的情况下收集的。使用板载122.88 MHz CMOS压控晶体振荡器用作系统时钟参考。

图14.系统相位噪声性能

C:热性能

根据应用和配置,高速DAC的功耗可能接近4 W。该器件使用裸露芯片封装来降低热阻并允许芯片直接散热。使用带风扇的机械散热器来散发封装的热量。在安装散热器的情况下,LTM4622在25°C的环境温度下显示出的最高温度读数约为60.6°C。
结论


本文提出了一种高频、低失真、低噪声的信号源。所介绍的系统是一种采用基于高速DAC的DDS架构的低成本RF信号频率合成器解决方案,通过使用基于DDS技术的矢量信号发生器,该系统较之简单PLL的有多项优势,例如简单化、低失真、高分辨率调谐、近乎瞬时的跳频、相位和幅度调制。


DDS架构的多项优势使得调整和校准输出功率以及微调输出频率成为可能。在系统中添加校准例程可为用户提供从DC到5.5 GHz的输出参考信号音,精度为±0.5 dBm,动态范围为0 dBm到-40 dBm。对于实验室仪器而言,这是一种近乎理想的解决方案。


查看往期内容↓↓↓

亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 随着航空航天技术的迅猛发展,航空电子网络面临着诸多挑战,如多网络并行传输、高带宽需求以及保障数据传输的确定性等。为应对这些挑战,航空电子网络急需一个通用的网络架构,满足布线简单、供应商多、组网成本相对较低等要求。而以太网技术,特别是TSN(时间敏感网络)的出现,为航空电子网络带来了新的解决方案。本文将重点介绍TSN流识别技术在航空电子网络中的应用,以及如何通过适应航空电子网络的TSN流识别技术实现高效的航空电子网络传输。一、航空电子网络面临的挑战航空航天业专用协议包括AFDX、ARINC等,这些
    虹科工业智能互联 2024-11-29 14:18 100浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 151浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 118浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 65浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 59浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 69浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 70浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 91浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 163浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 151浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 119浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 163浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 76浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦