什么是专用集成电路(ASIC)?

原创 摩尔学堂 2023-06-15 09:24

作为现代电气工程不可或缺的一部分,专用集成电路 (ASIC) 构成了一组多样化的集成电路 (IC),可帮助设计人员优化复杂的电子设备。

曾经有一段时间,分立元件(主要是电阻器、电容器、电感器、晶体管和二极管)足以满足许多电气设计项目的需要。如今,很少能看到一块电路板没有至少一个 IC,而且电路板上布满各种形状和尺寸的 IC 也很常见。IC 在现代电气工程中的巨大普及与工程师可以轻松找到、评估、购买和实施的大量微芯片密切相关。然而,现成的 IC 有时无法提供通往优化解决方案的直接途径,在这种情况下,工程师可能会考虑使用 ASIC。

什么是专用集成电路?定义专用集成电路

没有关于 ASIC 确切含义的官方声明,而且许多电子专业人士可能并不总是就 ASIC 到底是什么或特定组件是否应归类为 ASIC 达成一致。尽管如此,我认为以下摘自旧版模拟对话(第 12 页)的定义是 ASIC 的一个很好的起点: 

[A]n 使用基于单元的技术为特定客户、应用或市场设计的集成电路,其中必要的功能块从单元库中获取、互连和模拟以提供所需的系统功能和性能水平。该定义不包括使用传统“定制”设计技术设计的 IC。

 

该定义的第一部分——为特定客户、应用或市场设计的IC——是对该术语的更广泛且可能更普遍的理解。但是,定义的第二部分很有帮助,因为它将“ASIC”与简单的“定制 IC”区分开来。如果 ASIC 与定制 IC 相同,为什么我们需要 ASIC 这个术语?

完整定义将 ASIC 标识为提供定制功能但不需要完全定制设计过程的 IC。相反,定制功能是通过类似于 PCB 设计的过程实现的。在绘制原理图时,我们会从库中取出元件并将它们互连,有时我们会通过仿真来验证部分原理图。对于 ASIC,设计人员从库中获取功能块,将它们互连,并通过仿真验证功能和性能。

例如,图 1 显示了一个 ASIC,它结合了标准数字信号处理器 (DSP)内核和客户预期应用所需的附加电路。 

图 1.带有 DPS 的示例 ASIC。图片由 Wiki Commons 和 Pauli Rautakorpi 提供 [ CC by 3.0 ]

ASIC 中的“特定应用”是什么意思?

ASIC 中的“特定应用”一词可能有些误导。在当前的电气工程用语中,“应用”通常是指电气设备的实际用途。换句话说,电气设备的应用回答了以下问题:什么样的有用工作这个设备是用来执行的吗?

例如,在他关于滤波器的介绍性文章中,Nick Davis 解释说滤波器应用包括无线电通信、直流电源和音频电子设备。这意味着滤波器电路在旨在实现无线通信、生成可靠电源电压或再现高质量声音的模块或系统中很有用。

事实证明,专用集成电路通常并不特定于特定应用,或者至少它们不限于特定应用。例如,一个高度集成的数据转换器 ASIC 可能主要是为医学成像应用而设计的,但同样的设备完全有可能同样适用于工业视频处理或多通道汽车传感器网络。我们甚至可以想到一些更通用的东西,例如片上系统 (SoC) ASIC,它最初是为智能手机设计的,但包含了足够的功能,可以在各种应用中取得成功。

因此,我认为术语特定于任务的集成电路 (TSIC) 或特定于功能的集成电路 (FSIC) 会更准确。不过,TSIC和FSIC肯定不会像ASIC那样顺口溜。一般来说,ASIC 的设计使得一个芯片可以有效地执行特定的任务组合。即使特定应用程序最初需要这种任务组合,也可能存在各种其他应用程序,在这些应用程序中,这种 ASIC 将是现成 IC 的有效且理想的替代品。

ASIC 设计周期

即使借助单元库中的功能块,设计和验证定制 IC 也不是一件容易的事。如果设计人员无法在现成的 IC 中找到所需的功能或性能,第一个解决方案通常是“继续寻找”。如果困难仍然存在,可编程逻辑—— 现场可编程门阵列 (FPGA)或复杂可编程逻辑器件 (CPLD)——可能是一个合理的选择。

在制造单个芯片之前,ASIC 开发可能需要数月甚至数年的劳动力和数百万美元的一次性工程 (NRE)成本。因此,对于具有苛刻性能要求的大批量项目,管理层通常可以证明 ASIC 开发所涉及的时间和金钱是合理的。如果体积足够大,ASIC 实际上可以在经济上变得有利。总体生产成本降低,因为组件和组装成本的降低足以补偿摊销 ASIC 开发成本的增加。图 3 中可以看到一个示例细分。

 

图 2.此图比较了基于 ASIC 的开发成本与基于可编程逻辑的开发成本。如您所见,随着产量的增加,ASIC 方法最终实现了更低的总生产成本。图片由Numato 实验室提供

下面的列表传达了 ASIC 设计项目的主要部分。

  • 系统要求和其他相关约束用于制定 ASIC 的规范。

  • 规范为创建高级架构设计提供了框架。

  • 高层架构被实现为低层逻辑。与 FPGA 和 CPLD 一样,硬件描述语言(VHDLVerilog)已成为 ASIC 设计的重要工具。

  • 该设计经过测试以验证功能和时序。

  • 逻辑设计必须转化为物理布局。

  • 验证物理布局后,项目就可以进行流片和制造了。

  • 成功制造和封装后,ASIC 可以进行电气测试并集成到原型中进行实验室和现场测试。

图 3.示例 ASIC 图。图片由英特尔提供

此图传达了英特尔和谷歌开发的 ASIC 的高级架构。它是“云和通信服务提供商”的“可编程网络设备”。

总而言之,ASIC 是高性能和大容量电子设备的重要补充,这些电子设备无法使用现成的组件进行优化设计。

本文编译自:ALLABOUTCIRCUITS

--------------------


今天小编带来了:ISSCC2023套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。

ISSCC2023完整资料领取方式如下   
识别关注下方公众号
公众号对话框输入 1425 
由于公众号后台资料容量有限
每份资料有效期为30天,过期会被更新删除
资料仅供个人学习使用,禁止分享与转发!
大家如果需要,请及时下载!

1、深入理解SerDes(Serializer-Deserializer)之一

2、深入理解SerDes(Serializer-Deserializer)之二

3、科普:深入理解SerDes(Serializer-Deserializer)之三

4、资深工程师的ESD设计经验分享

5、干货分享,ESD防护方法及设计要点!

6、科普来了,一篇看懂ESD(静电保护)原理和设计!

7、锁相环(PLL)基本原理 及常见构建模块

8、当锁相环无法锁定时,该怎么处理的呢?

9、高性能FPGA中的高速SERDES接口

10、什么是毫米波技术?它与其他低频技术相比有何特点?

11、如何根据数据表规格算出锁相环(PLL)中的相位噪声

12、了解模数转换器(ADC):解密分辨率和采样率

13、究竟什么是锁相环(PLL)

14、如何模拟一个锁相环

15、了解锁相环(PLL)瞬态响应

16、如何优化锁相环(PLL)的瞬态响应

17、如何设计和仿真一个优化的锁相环

18、锁相环(PLL) 倍频:瞬态响应和频率合成

19、了解SAR ADC

20、了解 Delta-Sigma ADC

21、什么是数字 IC 设计?

22、什么是模拟 IC 设计?

23、什么是射频集成电路设计?

24、学习射频设计:选择合适的射频收发器 IC

25、连续时间 Sigma-Delta ADC:“无混叠”ADC

26、了解电压基准 IC 的噪声性能

27、数字还是模拟?I和Q的合并和分离应该怎么做?

28、良好通信链路性能的要求:IQ 调制和解调

29、如何为系统仿真建模数据转换器?

30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)

31、使用有效位数 (ENOB) 对 ADC 进行建模

32、以太网供电 (PoE) 的保护建议

33、保护高速接口的设计技巧

34、保护低速接口和电源电路设计技巧

35、使用互调多项式和有效位数对 ADC 进行建模

36、向 ADC 模型和 DAC 建模添加低通滤波器

37、揭秘芯片的内部设计原理和结构

38、Delta-Sigma ADCs中的噪声简介(一)

39、Delta-Sigma ADCs中的噪声简介(二)

40、Delta-Sigma ADCs 中的噪声简介(三)

41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)

42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)

43、放大器噪声对 Delta-Sigma ADCs 的影响(一)

44、放大器噪声对 Delta-Sigma ADCs 的影响(二)

45、参考电压噪声如何影响 Delta Sigma ADCs

46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声

47、时钟信号如何影响精密ADC

48、了解电源噪声如何影响 Delta-Sigma ADCs

49、运算放大器简介和特性

50、使用 Delta-Sigma ADCs 降低电源噪声的影响

51、如何设计带有运算放大器的精密电流泵

52锁定放大器的基本原理

53了解锁定放大器的类型和相关的噪声源

54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术

55、干货!《实用的RFIC技术》课程讲义

56、如何在您的下一个 PCB 设计中消除反射噪声

57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!   

58、帮助你了解 SerDes!                                    

往期精彩课程分享

1、免费公开课ISCAS 2015 :The Future of Radios_ Behzad Razavi

2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)

3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)

4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs

5免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)

6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)

7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动

8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi

9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块

10、免费公开课:ISSCC2020-小数N分频数字锁相环设计

11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)

12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础

13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础

14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)

15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)

16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe

17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)





专注于半导体人才培训,在线学习服务平台!


人才招聘服务平台

摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论 (0)
  • 文/Leon编辑/cc孙聪颖‍蛇年春晚最有意思的节目,一定非机器人跳舞莫属。就算是遥控或预编程,机器人能够做出如此复杂的动作,在五年前都是不敢想象的事情,其制造商宇树科技也因此火爆全网。就在春节过后不到一个月,会骑自行车的人形机器人诞生了。这背后,是近年来“具身智能”概念的迅猛发展。“我们造了一个跟人一样灵动的机器人!”3月11日,智元机器人联合创始人兼首席技术官彭志辉在微博上说道。在视频中,灵犀X2会骑自行车、能跳《科目三》,还可以与人促膝长谈,甚至拿起葡萄“穿针引线”。在全球人形机器人领域,
    华尔街科技眼 2025-03-17 12:38 108浏览
  • 失效模式与影响分析(FMEA)失效模式与影响分析(FMEA)是一种系统方法,用于识别和分析系统或过程中的潜在失效,广泛应用于工程和制造领域,以提高产品可靠性和安全性。最新标准由 2019 年发布的 AIAG-VDA FMEA 手册(第一版) 定义,该手册结合了美国和欧洲汽车行业的最佳实践,并引入了 七步法,确保分析全面且结构化。图:优思学院六西格玛新版 FMEA 失效分析的七个步骤1. 规划与准备确定 FMEA 研究的 范围、边界和目标。组建跨职能团队(设
    优思学院 2025-03-17 14:43 114浏览
  • 在工业4.0与智能制造深度融合的今天,设备实时性、稳定性和成本效益成为企业核心竞争力的关键。触觉智能将基于RK3506平台,分享工业应用方案,本期为大家带来DSMC串行接口在数控行业的应用。DSMC技术解析底层架构突破双倍数据速率:通过上升沿与下降沿双重触发机制,实现单周期内2倍数据吞吐量,较传统SPI接口效率提升300%。多通道并行:支持8线/16线位宽可配置模式,满足多轴协同场景下的同步通信需求。性能实测标杆超低延迟:FPGA互联场景下,写延时小于75ns,读延时小于260ns,相比PCIe
    Industio_触觉智能 2025-03-18 11:46 53浏览
  • 随着汽车行业逐步迈向电气化和电池动力,位置传感器以及其他长期在车辆中被忽视但却至关重要的小型元器件正逐渐成为关注的焦点。某些电子元器件常常吸引大量关注,例如如今用于训练AI模型的强大GPU几乎每天都出现在新闻中。而其他元器件则默默地执行着重要但鲜为人知的功能。艾迈斯欧司朗一些历史悠久的产品线便隶属于后者,其中包括磁性和电感式位置传感器、电容式传感器和电池监控芯片。工业泵和风扇等产品的制造商利用位置传感器实现电动机高效平稳运行。在车辆的方向盘中安装电容传感器可以保障安全,它可以用于在辅助驾驶模式下
    艾迈斯欧司朗 2025-03-17 22:22 68浏览
  • 在招聘合适的人才时,清晰度至关重要。想要找到合适的人选,并确保他们在岗位上取得成功,第一步就是明确职位的关键绩效指标(KPI)和预期成果。但光有这些还不够,如何判断候选人是否具备必要的特质?这时,KSA模型就派上用场了。它是一个简单但强大的方法,能帮助你聚焦于真正影响岗位表现的关键要素。今天,我想和你聊聊这个模型,帮你更轻松地为合适的候选人设定合适的KPI。了解KSA模型KSA代表知识(Knowledge)、技能(Skills)和态度(Attitude),是评估候选人是否适合岗位的三个关键维度。
    优思学院 2025-03-18 15:03 49浏览
  •        在工业视觉检测线上,一台搭载传统图像传感器的机器人因高温导致图像噪点激增,误将合格零件判定为瑕疵品,每小时损失超10万元;在深夜的安防监控画面中,模糊的噪点让犯罪分子身影难以识别,导致案件侦破延迟—— 噪声,已成为图像传感器行业的“无声杀手”。据Yole统计,全球约35%的工业检测误差源于传感器噪声干扰,而安防场景下60%的有效信息因低照度噪点丢失。传统方案试图通过单一优化像素或电路来降噪,却陷入“按下葫芦浮起瓢”的困境。  &nb
    中科领创 2025-03-18 10:24 47浏览
  • 新兴的个人健康监测技术为何在医疗场景和日常生活中越来越受到青睐?为了准确回答这个关键问题,我们首先需要理解三个全球性趋势:如今,几乎人手一部智能手机,这等于随身携带了一台高性能计算机、一个全天候运行的智能医疗传感器中心,还有一块显示屏。发达工业国家的人口正在迅速老龄化,而老年群体的疾病发病率较高。与此同时,年轻人也比过去更加关注如何延长健康寿命。这些人群以及服务他们的医务人员可以利用新技术来优化生活方式,合理调控运动、饮食、睡眠和压力等关键因素,帮助他们作出更健康的生活选择。如摩尔定律所预言,半
    艾迈斯欧司朗 2025-03-17 21:50 73浏览
  • 晨穹电子一家专业从事研发、生产、销售各类传感器为一体的高新科技企业。1 人赞同了该文章在工业4.0、智能家居、新能源汽车等场景中,传感器作为数据采集的核心器件,其抗电磁干扰(EMC)能力直接影响系统可靠性。尤其在5G通信、高功率电机、无线充电等复杂电磁环境下,传感器的信号失真问题愈发突出。本文结合MEMS传感器、物联网(IoT)设备、边缘计算等热度技术,解析提升传感器抗干扰能力的6大策略。 一、电磁干扰对传感器的威胁; 1、电磁干扰(EMI)会导致传感器出现 。2、信号跳变(
    传感器晨穹 2025-03-18 09:28 79浏览
  • 在制药行业中,生产工艺的精准控制与产品质量安全密切相关。随着制药工业4.0的发展,传感器作为生产流程的"感知器官",在确保合规性、提升效率、降低风险方面发挥着不可替代的作用。本文将以晨穹电子科技(以下简称"晨穹")的压力、温度、流量及液位传感器为例,解析制药厂关键工艺流程中的传感器应用场景及技术要求。一、制药核心工艺流程中的传感器需求1. 原料处理与配液系统液位监测:储罐内原料液位实时监控需使用卫生型液位计。晨穹磁翻板液位计采用316L不锈钢材质,具备CIP/SIP(在线清洗/灭菌)耐受性,符合
    传感器晨穹 2025-03-18 15:51 52浏览
  • 一、问题现象:语音播放异常的典型表现在使用WT588F(E)系列语音芯片的开发过程中,工程师常会遇到以下两类典型异常现象:播放不全:语音仅播放前段内容后突然中断,或特定段落无法触发播放断续:音频输出存在明显卡顿、爆音或波形畸变某智能门锁项目实测数据显示,在首批样机中有2%的设备出现语音提示突然中断的情况,经排查发现电源电压在播放瞬间跌落至2.0V(低于芯片工作阈值)。这类问题的根源往往隐藏于硬件设计与系统协同的细节之中。二、核心机理:电压稳定性对语音芯片的影响2.1 电源系统的动态响应特性WT5
    广州唯创电子 2025-03-17 09:18 127浏览
  • 近期,据全球物联网市场调研机构IoT Analytics公布数据显示,2025年全球物联网设备连接数预计将突破200亿,同比增长约14%,物联网技术正以稳定上升态势向工业自动化、智慧城市、智慧农业与智慧家居等领域纵深推进。在多样化的应用场景和复杂环境需求的驱动下,物联网无线通信技术的运行功耗、传输距离和频段兼容性正受到前所未有的关注。为增加物联网通信模块的配置灵活度,消除物联网设备的“连接焦虑”,华普微重磅推出了一款自主研发的超低功耗、可兼容Sub-GHz与2.4GHz 双频段的高性能LoRa
    华普微HOPERF 2025-03-18 15:43 48浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦