综述:基于新兴材料和纳米架构的远程医疗可穿戴传感器

原创 MEMS 2023-06-13 00:01

可穿戴传感器在远程医疗生理和生化标志物传感方面取得了重大进展。通过监测体温、动脉血氧饱和度、血糖和呼吸频率等生命体征,可穿戴传感器为疾病的早期检测提供了巨大的潜力。近年来,基于二维(2D)材料的可穿戴传感器的开发取得了重大进展,使这类传感器具有柔性,优异的机械稳定性,高灵敏度和准确性,为远程和实时健康监测引入了一种新的方法。

据麦姆斯咨询报道,近日,布拉格化学与技术大学(University of Chemistry and Technology Prague)在npj Flexible Electronics期刊上发表了题为“Wearable sensors for telehealth based on emerging materials and nanoarchitectonics”的综述文章,概述了用于远程健康监测系统(RHMS)的基于二维材料的可穿戴传感器和生物传感器。本文重点介绍了五种类型的可穿戴传感器,并根据其传感机理进行了分类,如压力传感器、应变传感器、电化学传感器、光电传感器和温度传感器;概述了二维材料的性能及其对可穿戴传感器性能和操作的影响;探讨了可穿戴传感器的基本传感原理、机理及其应用。本文最后还讨论了这一新兴远程医疗领域存在的障碍和未来机遇。


综述概览

在本综述文章中,研究人员概述了过去四年中开发的基于二维材料的可穿戴传感器/生物传感器和概念验证的远程医疗系统。新兴的基于二维材料和纳米架构的可穿戴传感器为用户提供了许多优势,包括体温、动脉氧饱和度、汗液生物标志物、呼吸周期、血糖、心率和运动等生命体征监测,以及早期病毒/流感(即SARS-CoV-2)识别。研究人员概述了不同的可穿戴传感器(压力传感器、应变传感器、电化学传感器、光电传感器、温度传感器),包括它们的工作原理、检测机制、与电子电路的集成以及在人体监测中的应用。

首先,研究人员描述了一种利用压力传感器提供人类健康实时信息的集成医疗保健系统。该系统主要监测心率(附着在人体皮肤上)和呼吸周期(安装在口罩上)。这里描述的可穿戴压力传感器在典型环境下的反复安装和拆卸下工作。尽管如此,在实际应用中,压力传感器还将接触到具有挑战性的环境条件,包括出汗和高湿度,这可能会影响二维材料的稳定性和传感器的性能。因此,有必要对人工复杂环境下工作稳定性背后的机制进行更多的研究。此外,应该研究对二维材料的性能和纳米/微米结构影响较小的有效封装方法。


可穿戴压力传感器

接下来,研究人员将重点放在通过集成可穿戴压力传感器跟踪人类活动上,这种传感器可以快速识别人的大动作和小动作,并将数据传输到医疗保健提供者或用户的智能手机上。这包括一系列运动监测,例如心跳、肌肉疲劳、身体关节弯曲、喉结振动和呼吸频率。然后还讨论了用于远程健康监测的一体化纺织品应力传感器的使用。电阻式应变传感器显示出优异的拉伸性能和灵敏度;然而,由于环境变化(湿度和温度变化),它们存在迟滞、应变外部范围的线性差以及不稳定性等问题。例如,过渡金属碳化物(MXenes)在开放环境中会被氧化,这会缩短传感器的保质期,并导致一致性、可靠性和可重复性方面的问题。抗氧化剂的使用和改良的MAX相合成工艺有望解决MXenes的稳定性问题,但这项工作仍限于实验室规模。此外,在开发能够检测各个方向和多个变形平面上的解离应变的应变传感器方面也存在困难。为了克服这一限制,需要对创新的传感器架构和三维纳米结构进行更多的研究。


可穿戴应变传感器

然后,研究人员介绍了电化学生物传感器,以远程监测各种生物标志物,例如应激激素、乳酸、葡萄糖、汗液pH值和唾液中的COVID-19。大多数生物传感器仅评估少数生物标志物。在未来,需要更多的研究来开发新的基于二维材料的传感器,并扩展对传感的理解,以监测各种生物标志物。在医疗保健领域,扩大可穿戴传感器的使用需要了解生物流体成分及其与健康和特定疾病状况的关系。研究人员还概述了远程医疗应用的基于二维材料的可穿戴光电传感器和温度传感器。石墨烯是研究最广泛的用于温度传感器和光电传感器的二维材料,并已从研究阶段发展到临床应用。然而,其它二维材料,如过渡金属二硫化物(TMD)、黑磷(BP)和MXenes正在迅速填补这一空白。与石墨烯相比,这些材料在带隙范围和光电流产生能力方面具有一定的优势,使其成为未来可穿戴光电传感器开发的潜在候选材料。


可穿戴光电、电化学和温度传感器/生物传感器

研究人员预计,基于二维材料的可穿戴传感器将成为医疗保健行业的一个新的传感平台。要证明基于二维材料的可穿戴传感器和生物传感器在所有关键性能上都能“击败”商用传感器,仍然存在重大挑战。除了可穿戴传感器的价格之外,还必须彻底解决一些挑战,例如柔性电源(或自供电)的必要性、二维材料的稳定性和大规模生产、健康监测数据的隐私性等。目前大部分工作都集中在氧化石墨烯、Ti3C2Tx和BP;然而,仍有许多可行的二维材料需要研究。

此外,通过可穿戴传感器/生物传感器和大数据处理实现的RHMS在为用户提供实时健康监测信息和诊断工具方面具有巨大的前景。未来研究如何提高基于二维材料的可穿戴传感器的传感精度,可以拓宽其适用性。接下来,研究人员建议鼓励未来在可穿戴传感器和远程医疗领域的研究和应用:(i)必须开发低成本的工业规模制造技术;(ii)建立基于人工智能(Al)的自动化决策系统(Al与RHMS集成),监测实时数据,同时检查患者的既往病史,以帮助医疗保健提供者快速识别异常;(iii)创造更先进的多参数传感可穿戴设备和远程医疗平台,功能强大,成本低廉,可用于各种医疗保健领域;(iv)需要与电气工程师密切合作开发具有柔性电路板、紧凑尺寸、低功耗和重量轻的健康信号处理和数据传输单元。现有电路采用传统芯片制造,不适用于特定的应用,如置于隐形眼镜中用于测量眼压的芯片。因此,有必要开发一种具有长工作寿命的小尺寸电路系统来跟踪人体生理信息。研究人员相信,该综述可以让读者全面了解远程医疗系统中基于二维材料的创新型可穿戴传感器的现状、挑战和未来前景。

论文信息:
https://www.nature.com/articles/s41528-023-00261-4

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论 (0)
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 192浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 115浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 88浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 88浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 151浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 194浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 90浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 147浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 97浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 111浏览
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 118浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 157浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦