工程师必须知道的大电流单通道栅极驱动器设计技巧

安森美 2023-06-12 19:00

点击蓝字 关注我们

NCD(V)5700x 是大电流单通道栅极驱动器,内置电流隔离功能,用于在高功率应用中实现高系统效率和可靠性。其特性包括:互补输入(IN+ 和 IN-),开漏故障()和就绪 (RDY) 输出,复位或清除故障功能(),有源米勒箝位 (CLAMP),去饱和保护 (DESAT),去饱和情况下软关断,拉电流 (OUTH) 和灌电流 (OUTL) 分离驱动输出(仅限 NCD(V)57000),精确欠压闭锁 (UVLO),低传播延迟(最大值90 ns)和小脉冲失真(最大值25 ns),较高的共模瞬变抗扰度 (CMTI)——在 VCM = 1500 V条件下可承受 100kV/us(最小值),输入信号范围涵盖 5 V 和 3.3 V,输出差分偏置电压(VDD2-VEE2)最高 25 V(最大值),VDD2 额定值为 25 V(最大值),VEE2 额定值为 -10 V(最大值)。NCD(V)5700x 提供 5 kVrms 电流隔离和 1.2 kV 工作电压能力,输入和输出之间的爬电距离保证至少 8 mm。宽体 SOIC-16 封装满足增强型安全绝缘要求。


本应用笔记介绍 NCD(V)5700x 在系统应用中的一些参数、功能和设计技巧。



原版文档获取

点击文末的“”和“在看”,并发送截图和您的邮箱地址到后台,即可领取原版文档哦~



互补输入逻辑信号与输出之间的关系如表 1 所示。


表 1. 输入和输出信号逻辑

注:X:浮空,内部 50 kΩ 下拉电阻将 IN+ 下拉至 GND1,内部 50 kΩ 上拉电阻将 IN- 上拉至 VDD1。Hi-Z:高阻抗状态。


输入逻辑信号框图如图 1 所示。


图 1. 输入逻辑信号框图


为了获得良好的信号质量和抗扰度,可以在微控制器和栅极驱动器输入(IN+、IN-、)之间放置一个输入滤波器 RC 网络。RC 值将取决于系统要求的输入频率范围、占空比和时间延迟。此 RC 滤波器的应用电路如图 2 所示。此 RC 滤波器需要放在尽可能靠近栅极驱动器引脚引线的地方。高压输出电路的共模瞬变噪声可能会干扰低压输入侧。数字控制输入应使用低阻抗信号源以防止出现毛刺或造成意外开关。优先使用标准 CMOS 或推挽驱动电路,避免开漏配置。


图 2. 输入信号的 RC 滤波器网络


根据表 1,当 PWM 信号作用于同相输入 (IN+) 时,反相输入 (IN-) 可用于使能/禁用输入信号。信号使能/禁用的电路示例如图 3 所示。


此配置仅控制输出信号,不控制任何保护(UVLO 和去饱和)的复位功能,输出跟随同相信号。


图 3. 反相输入 (IN-) 控制信号使能

串联电阻和解耦电容必须置于 VDD1 和 GND1 之间。电容需要尽可能靠近栅极驱动器引脚引线,以滤除任何高频噪声并维持输入偏置电压。一般使用值为 0.1 μF 和 2.2 μF 的低 ESL 和 ESR 芯片电容 (MLCC),如图 4 所示。图 5 显示了 5.0 V 和 3.3 V 条件下的典型输入偏置工作电源电流;当采用 5.0 V 或 3.3 V 电源供电时,可以估算功率需求。


图 4.用于输入电源偏置 (VDD1) 的解耦电容


图 5. 输入电源电流 (IDD1) 与输入频率


NCD5700x 系列具有高拉电流和灌电流能力。因而需要额外的布局措施,尤其是当外部栅极电阻值较小时。由于内部功率 MOSFET 导通,将出现高峰值电流瞬变。解耦电容须放置在 VDD2、VEE2 和 GND2 之间,并且尽可能靠近驱动器引脚引线,以防止 PCB 走线和封装的寄生电感导致偏置电压过冲或欠冲。主要电流需求来自外部负载电容,因此峰值电流取决于外部栅极电阻。在一般应用中,当栅极电阻值大于 10 Ω 时,每个正 (VDD2) 和负 (VEE2) 偏置需要 10 μF 电容。当栅极电阻小于 10 Ω 时,建议使用 20 μF 电容。当然,低 ESL 和 ESR 芯片电容 (MLCC) 是首选。电路示例如图 6 所示。典型输出偏置工作电源电流与输入频率、环境温度、负载电容的关系分别如图 7、图 8 和图 9 所示。


请注意,这些曲线代表外部栅极电阻仅为 1 Ω 时的极端开关条件。大多数应用会使用更高的栅极电阻值,因此,电流将比这些曲线中所示的值要低。可以估计正偏置和负偏置电源的功率需求。


图 6. 用于输出电源偏置的解耦电容(VDD2 和 VEE2)


图 7. 输出电源电流(IDD2 和 IEE2)与输入频率


图 8. 输出电源电流(IDD2 和 IEE2)与负载电容


图 9. 输出电源电流(IDD2 和 IEE2)与环境温度

当外部栅极电阻和电源偏置是固定值时,务必检查栅极驱动器的功耗。设计方案必须确保当器件在期望温度范围内工作时,器件结温不超过额定最大值。栅极驱动器的功耗计算公式如下所示。


(公式1)

其中:

PD-total 为器件总功耗(W)

PD-input 为输入偏置(VDD1)功耗 (W)

PD-output 为输出偏置(VDD2、VEE2)功耗 (W)


为了计算输入偏置功耗 (PD-input),可以使用图 5 中提供的输入电源电流值或数据表中的最大偏置电流。公式为:


(公式2)


图 10 中的框图显示了输出偏置功率输送路径。为了计算输出偏置功耗 (PD-output),必须考虑两个因素。首先是拉电流/灌电流功率 MOSFET 的内部逻辑电路和结电容充放电损耗的基本工作功率需求。这可以在空载条件下使用特定的 VDD2 和 VEE2 电压偏置条件进行测量,如图 11 所示。其次,当输出驱动负载时,输出偏置的功耗在内部拉电流/灌电流功率 MOSFET 的等效导通电阻和外部栅极电阻之间分配。


图 10.输出偏置的功率输送路径


图 11.空载时的输出电源电流(IDD2、IEE2)与输入频率


PD-output 的计算公式为:


(公式3)

其中:

Fi = 输入频率

Qg = 栅极电荷

Rsource = 内部拉电流 MOSFET 导通电阻  1Ω

Rsink = 内部灌电流 MOSFET 导通电阻

Rg = 外部栅极电阻


结温可通过下式估算:


(公式4)

其中:

Rth(JA) = 结至环境热阻

TA = 环境温度

Tth(JA) = 150°C/W,条件:100 mm2,1 盎司铜,1 个表面层

Tth(JA) = 84°C/W,条件:650 mm2,1 盎司铜,1 个表面层和2个内部电源平面层

(公式4)也可用于计算最大结温 TJ(MAX) 为 150°C 时环境温度 (TA) 下的最大允许功耗 (PD )。图 12 显示了基于特定 PCB 布局、层和表面积的 NCD(V)5700x 系列结至环境热阻对应的功耗降额曲线。


12:NCD(V)5700x 系列的功耗降额曲线

为确保驱动操作的电压正确,输入 (VDD1) 和输出 (VDD2) 偏置电源通过欠压闭锁保护进行监测。当 UVLO 保护被触发时,输出信号逻辑将立即变为低电平,传播延迟变短。RDY 引脚上的电源良好 (READY) 信号仅表示此 UVLO 事件,可能具有 8 μs(典型值)延迟时间。RDY 引脚输出接口为内部开漏,通过 50 kΩ 上拉电阻拉至 VDD1。图 13 中的框图显示了 UVLO 和 RDY 功能。详细时序图已在数据表中给出。图 14 和图 15 显示,RDY 仅与欠压闭锁保护相关。

13:NCD(V)5700x 系列的 UVLO 和 RDY 功能框图


14:NCD(V)5700x 系列的 UVLO2 触发时的 RDY 波形


15:NCD(V)5700x 系列的 DESAT 保护触发时的 FAULT 波形

为了防止功率半导体器件在过流或短路事件中消耗过多功率,去饱和保护功能是一种在栅极驱动器中加以实现的有效且低成本的方法。利用功率器件的正向特性,可以检测高器件电流导致较高饱和电压或过渡到有源区域(双极性器件)/饱和区域(单极性器件)的情况。因过流而关断时,如果栅极电压像在正常开关操作中一样快速关断,将出现高 di/dt。这与电源路径中的寄生环路电感一起,会产生较高关断 dV/dt,进而可能导致过压应力,并可能损坏开关。当 DESAT 保护触发时,软关断 (STO) 特性可降低功率器件上的应力。栅极驱动器中具有较低灌电流能力的额外 MOSFET (STO) 将激活,取代具有高灌电流能力的正常关断晶体管。栅极放电电流减小,栅极电压缓慢关断,因此关断 di/dt 和 dV/dt 较低。STO 功能不影响正常工作时的开关损耗。灌电流 MOSFET 和软关断 MOSFET 的典型饱和电流如图 16(灌电流 MOSFET,QSink)和图 17(软关断 MOSFET,QSTO)所示。图 15 显示 STO 激活时负载电容电压缓慢下降。图 18 是带软关断功能的去饱和保护框图,详细时序图参见数据表。


16:内部灌电流 MOSFET (Qsink) 的典型饱和电流


17:内部软关断 MOSFET (QSTO) 的典型饱和电流


18:NCD(V)5700x 系列的去饱和保护示意图


DESAT 保护电路仍需避免在功率器件导通的短瞬态时间内误触发,以允许集电极/漏极电压降至 DESAT 阈值以下。该瞬态持续时间称为“DESAT 消隐时间 (tBlank)”。消隐时间由内部恒定充电电流源 (IDESAT-CHG )、DESAT 阈值电压 (VDESAT-THR ) 和外部消隐电容 (CB) 控制。当输入信号有效时,消隐电容由“DESAT 放电 MOSFET”进行放电,从而输出低电平,然后在下一个导通周期复位消隐时间。典型应用电路如图 19 所示。


19:典型去饱和保护应用电路

消隐时间公式如公式5 所示,其中包括前沿消隐;消隐时间与消隐电容的关系如图 20 所示。


(公式5)

其中:

VDESAT−THR = 9 V(典型值)

VD−OFFSET   = 0.7 V(典型值)

IDESAT−CHG  = 0.5 mA(典型值)

tLEB              = 450 ns(典型值)


在稳态下,DESAT 至 GND2 的电压为以下电压之和:电阻 (RDESAT) 上的电压、二极管 (DDESAT) 的正向电压和功率器件的饱和电压 (VCE-SAT)。功率器件饱和电压的触发阈值 (VCE-SAT-THR) 可以计算如下:


(公式6)

20:NCD(V)5700x 系列的消隐时间 (tBlank) 与消隐电容 (CB) 的关系


由于该检测环路中的一些寄生元件的原因,DESAT 保护可能会误触发,或者触发电流值意外地与计算值不一致。图 21 显示了去饱和模块二极管的结电容 (CJ-DESAT) 和电源环路中的寄生电感 (Lk);当应用 DESAT 保护时,电路需要考虑这些元件。


21:考虑去饱和保护电路中的寄生元件


DESAT 上负电压的机制主要是由于 CJ-DESAT 的放电。此负电压的原理如图 22 所示。在 QS 开关关断状态下,DDESAT 结电容 (CJ-DESAT) 的电压接近 BUS 电压,因为 DESAT 放电开关导通以使 DDESAT 能够承受 BUS 电压。结电容储存的能量 ECJ-DESAT = 1/2 CJ-DESAT VBUS 2。当 QS 导通时,CJ-DESAT 放电,其能量传输到消隐电容 CB,导致 CB 上出现负电压。如果结电容的值高于消隐电容的值,则消隐电容的负电压将更高,因为来自结电容的能量更多。该负电压会由 IDESAT-CHG电流源快速恢复,直至达到正电压并跟随 IGBT 的饱和电压。如果不通过调整消隐电容值来应对,可能会延长去饱和触发功能的延迟时间,导致 IGBT 的短路峰值电流更高。图 23 显示了以 GND2 为基准的 DESAT 电压的仿真结果。NCD(V)5700x 系列 DESAT 引脚的设计可承受高达 -9 V 的负电压而不会损坏 IC。


图 22:当 Qs 导通且 DESAT 放电开关关断时


图 23:Qs 导通期间的 DESAT 波形(仿真)


如果需要外部负电压保护,保护二极管 Dp 可与消隐电容并联。此二极管可以限制负电压,并改善延迟时间。图 24 和图 25 显示了使用保护二极管的电路和仿真结果。基于此分析,去饱和模块二极管 (DDESAT) 应具有低结电容值和快速反向恢复性能。保护二极管 (Dp) 应具有低正向电压和低漏电流。建议使用的 DDESAT 和 Dp 二极管如表 2 和表 3 所示。


24:DESAT 和 GND2 之间使用保护二极管 (Dp)


25:使用保护二极管时 Qs 导通期间的 DESAT 波形(仿真)


表 2:去饱和保护模块二极管 (D-DESAT)


表 3:保护二极管 (Dp)

注意:VR < 20 V 时的漏电流,Ta = 125°C 或 150°C


布置保护二极管时,需要考虑额外结电容和漏电流对消隐时间的影响。基于功率整流器或 IGBT 关断的反向恢复电流所带来的 dIc/dt,功率路径寄生电感将产生高频电压 (VLk)。此高频噪声可能通过去饱和引脚和 GND2 注入栅极驱动器。去饱和电阻 (RDESAT) 值如果足够大,可以抑制这种情况,使该噪声电流进入电源环路,而不是检测环路。一般而言,RDESAT 建议使用大约 1 kΩ 和 2.2 Ω。如果因为使用快速切换功率器件而产生较高 dVCE/dt 或 dVds/dt,去饱和电阻还可以有两个去饱和模块二极管以降低总结电容。当然,如果因此导致去饱和模块二极管和去饱和电阻上的正向电压较高,则触发阈值电压也会改变。建议应用电路如图 26 所示。


图 26:改进去饱和保护的建议应用电路


理想的 DESAT 电压波形图和消隐时间设计概念如图 27 所示。消隐和滤波时间之和必须小于功率器件的短路能力持续时间,以防止影响可靠性寿命,并且消隐时间应大于功率器件正常工作时的集电极/漏极电压下降时间,以防止任何误触发。


27:去饱和波形 (VDESAT) 图和消隐时间设计概念


NCD(V)57000/57001 栅极驱动器设计涉及到很多设计技巧,很难在一篇文章中讲述清楚。这篇中我们介绍了NCD(V)5700x的输入(IN)和输出(OUT)信号、输入偏置电源(VDD1)、输出正负偏置电源(VDD2和VEE2)、功耗(PD)和结温(TJ)、欠压闭锁(UVLO)和就绪(RDY)和去饱和(DESAT)保护和软关断(STO)这六个部分的参数、功能和设计技巧。


下篇文章我们将重点关注NCD(V)5700x的考虑使用外部BJT缓冲器实现软关断(STO)、用于偏置电源的齐纳分离式稳压器、栅极驱动电路中的箝位二极管、布局布线考虑等内容。


将安森美加入星标,下篇更新不容错过~


原版文档获取

点击文末的“”和“在看”,并发送截图和您的邮箱地址到后台,即可领取原版文档哦~



⭐点个星标,茫茫人海也能一眼看到我⭐


「 点赞、在看,记得两连~ 」

安森美 安森美(onsemi, 纳斯达克股票代码:ON)专注于汽车和工业终端市场,包括汽车功能电子化和安全、可持续能源网、工业自动化以及5G和云基础设施等。以高度差异化的创新产品组合,创造智能电源和感知技术,解决最复杂的挑战,帮助建设更美好的未来。
评论
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦