调频广播是如何被发明的?

硬件工程师炼成之路 2023-06-12 08:00

一、前言

  调频FM 收音机进一步改善了我们交流的方式。  根据霍华德·阿姆斯特朗的对手戴维·萨尔诺夫的说法,调频广播是“一场革命”。  很多关于这段历史的书籍、视频和文章的内容更多的聚焦在他们两人之间的争斗,但大都对调频广播的科学原理一带而过。 让我们听 Kathy 老师准确生动、简洁明了的介绍霍华德·阿姆斯特朗最初是如何发明 FM 收音机的, 以及这项惊人的发明又是如何导致他的悲惨命运的。

▲ 图1.1.1 戴维·萨尔诺夫与霍华德·阿姆斯特朗


二、从调幅到调频

  1923 年,Howard Armstrong 与他的朋友、时任 RCA 副总裁的 David Sarnoff 合作制造了 Radiola 收音机, 很快 Armstrong 和 Sarnoff 赚了数百万美元。  广播电台迅速普及,改变了社会文化的各个方面。 但还存在一个烦人的问题,那就是杂波干扰,它与 AM 收音机的性质有关。

▲ 图1.2.1 无线广播中的电磁波


  先了解一下调幅广播的基础知识。无线电波不是声波, 对吧?它们实际上是不可见的光波。 无线电波被用作传输或携带声音信息的媒介, 也称为载波,即装载信息的无线电波。 在 AM 收音机中,声音被转换成电信号,该信号用于改变载波的振幅。因此,调幅收音机的名称为 AM 收音机。  电火花、闪电等都会产生无线电波,从而叠加在电磁波上,从而在 AM 收音机中产生杂波干扰。

下面演示一下调幅收音机的杂波干扰。 

▲ 图1.2.2 调幅收音机被附近电火花干扰


  Sarnoff 曾多次表示,他希望有一个小黑匣子来消除杂波干扰。  Armstrong 认为他有解决方法。 为什么不创建一个无线电波,其中频率偏离原始频率,频偏的大小对应于麦克风中产生的声波幅度, 而不再利用电波的幅值来代表声音信号的强度。因此这种收音机被称为调频收音机。

▲ 图1.2.3 两种不同的信号调制方式


  实际上,许多科学家在二十世纪初期就对频率调制很感兴趣。  然而,在 1922 年,贝尔实验室的首席数学理论家约翰·卡森 (John Carson) 写了一篇论文,认为它行不通。  更准确地说,它会起作用,但它本质上会对信号产生失真,所以调频没有任何优势。 卡森最终得出的结论是,“广播中的杂波干扰,就像贫困一样永远与我们同在”。

  对于卡森的判断,阿姆斯特朗根本不服,他说: “对于这种完全基于数学得出的结论我嗤之以鼻。 1928 年,霍华德·阿姆斯特朗决定将所有时间都花在制作 FM 收音机上。三年了,他一无所获。 然后他有了一个激进的想法。他知道为了实现 FM 广播,需要改变载波频率。 据他了解当时可用的技术,需要将调制频率限制在一定范围之内,否则会使信号失真,这一点已经被卡森进行了数学证明。 但如果减少调制频带宽度就可能限制声音信号的动态范围,从而无法减少杂波干扰。

  为此他设想先从变化较小的低频开始, 然后利用频率倍增技术将信号变成较高频率,对应的频率变化就会增大。 在接收信号时,接收器允许的带宽要求比较大, 这被称为宽带 FM 收音机。 这的确不是一件容易的事,直到 1933 年Armstrong才把它弄好。 

▲ 图1.2.4 接收信号的带宽


  当他实现了他的设想之后,发现广播声音的质量比他希望的还要好。杂波干扰消失了。 调频信号的频率范围可以覆盖人类耳朵可以听到的整个频率范围,而不是像调幅广播那样只有一小段声音频率范围。  甚至可以同时传输两个信号来传输立体声。  可是谁能想到,调频广播的这种高保真特性,却招来萨尔诺夫的讨厌。

下面通过实验对比AM, FM对干扰的抑制作用。 

三、调频调制

  你可能会问,如何将来自麦克风的信号变为无线电波频率的变化?这个调频过程稍微复杂一点。 阿姆斯特朗先对极低频的载波进行幅度调制,接着将原来的载波进行抑制。  接着将调制信号移相90 度, 这就产生 PM 或相位调制信号。调制信号的幅度不会改变,而是改变了信号的相位,也就是信号的过零点的位置。  然后再使用一个电容器对信号进行积分,使其成为调频信号。  最后,使用正弦载波信号与调制信号相乘,获得无线电波信号,信号具有载波频率和频率变化。

▲ 图1.3.1 信号频率调制过程


四、调频解调

  那么如何解调FM信号呢?要谈论 FM 接收器,让我们先从 Armstrong 的 AM 接收器如何工作开始。  AM收音机中,Armstrong 放大了来自天线的信号,然后将其与另一个信号混合以产生易于处理的较低的中频信号。然后将通过滤波选择想要的频率信号。放大该信号,然后对其进行幅度包络检波。顺便说一下,可以使用简单的二极管实现信号包络线检波。最后将声音进行功率放大,输出到扬声器上。

▲ 图1.4.1 AM信号解调


  FM 接收器与 AM 接收器略有不同。在FM接受器中不需要窄频滤波器,否则就会丢失调制信号信息,取而代之的是宽频滤波器。  其次,中间具有限制器的电路,限制信号的幅度。如果波形超过限制阈值,任何信号变化都被削顶。 因为信号是调制在频率变化上,所以附加在幅度上的干扰杂波就会被滤除。 第三,检波部分不再使用包络检测器,而是使用了鉴频器电路, 正如阿姆斯特朗所说,鉴频器的作用是“将频率变化转化为幅度变化”。

▲ 图1.4.2 FM接收机中的限幅器


  Armstrong 用线圈和电容器创建了两个调谐电路。  一个调谐到载波频率以上, 一个调谐到载波频率以下。 如果输入信号没有被调制,也就是与载波频率相同,那么在两个电路中效果都一样。 然后标记为 48 和 49 的两个线圈将感应出相同的电压,它们之间没有电流输出。

  然而,如果频率被调制得更高或更低,那么一个谐振回路输出信号幅度高, 另外一个谐振回路幅值低。 两个谐振回路输出信号幅值不同,使得在它们之间产生电压差,并在扬声器或耳机中产生相应的电流。频率差越大,耳机中电流的幅度就越大。通过这种方式,阿姆斯特朗将频率的变化转换为扬声器振幅的变化。

▲ 图1.4.3 FM收音机中的鉴频器


五、商业之争

  既然 FM 比 AM 好那么多,为什么 Sarnoff 不高兴呢?按照萨诺夫的想法,他只希望有什么东西可以改进现有的调幅广播系统,而不是取代他的系统。  那该怎么办呀?Sarnoff 决定阻止他朋友ArmStrong的新发明的推广。他不仅将阿姆斯特朗赶出帝国大厦的实验室,还让其他的科学家写文章诋毁 FM,并禁止 RCA 使用 FM 收音机。 但阿姆斯特朗并没有气馁,他卖掉了他在 RCA 的所有股票,并创办了自己的 FM 公司,名为 Yankee Network。

▲ 图1.5.1 阿姆斯特朗的调频广播公司


  直到五年后,萨尔诺夫才意识到自己可能错失了调频广播重要商机, 并试图让阿姆斯特朗签署价值一百万美元的非排他性许可。 阿姆斯特朗不客气的让让萨尔诺夫滚开, 阿姆斯特朗的这种不合作态度让他的律师大为吃惊, 他说:“这是我第一次听说发明家为了非排他性许可而拒绝了 100 万美元。”

  萨尔诺夫被彻底激怒了。于是他与他的前朋友开始了个人恩怨争斗,并利用他的影响力让 FCC 改变了 FM 可用的无线电频率, 使阿姆斯特朗的设备和公司变得一文不值。 Sarnoff 和 RCA 随后在未经许可的情况下开始使用 FM, 很快许多其他公司也纷纷效仿。  1948 年 7 月,阿姆斯特朗提起诉讼。RCA 决定通过使诉讼尽可能漫长和艰巨来赢得胜利。  或者正如阿姆斯特朗所说,“他们会拖延这件事,直到我死了或破产。” 而这场官司一拖再拖。阿姆斯特朗的官司持续了好几年。 1952年,他的钱花光了,不得不贷款支付律师费。 1953 年 2 月 20 日,Sarnoff 在法庭作证时撒谎说“RCA 在开发 FM 方面所做的工作比这个国家的任何人都多,包括阿姆斯特朗”。

  失败后,阿姆斯特朗试图息事宁人,但萨尔诺夫不让他这么做。 1953 年 11 月,阿姆斯特朗向他的妻子玛丽恩说明财务状况, 他们之间产生了口角, 直至动起手来。失去理智的阿姆斯特朗用纸牌打了妻子的胳膊,  气愤的玛丽恩离家出走,再也没有回来看望她的丈夫。1954 年 1 月 31 日,正好是阿姆斯特朗与萨尔诺夫当年一起熬夜展示他的再生电路的 40 年周年纪念日,  阿姆斯特朗给妻子写了一封道歉信,接着从他公寓的窗户上取下空调,随后从 13 层楼跳下身亡。他 63 岁。

  当大卫萨尔诺夫听说阿姆斯特朗自杀时,他脱口而出“我没有杀阿姆斯特朗。” 但他一定知道他与阿姆斯特朗的绝望行为有关,并在他的葬礼上公开痛哭流涕。 Marion Armstrong 继续她丈夫的所有诉讼。最终她将提起 21 项专利诉讼并全部获胜。在接下来的 11 年里,她赢得了超过 1000 万美元的赔偿金。

  让我们稍微回到 1934 年。David Sarnoff 干嘛不想用 FM 取代他的系统呢?其中部分原因是他手头拮据,因为他已经投入 500 万美元来研发一个叫做阴极射线管的产品。 这个产品最终成就 Sarnoff 和 RCA 成为 CRT 电视巨头的原因。

六、后记

  但什么是阴极射线管?为什么发明它?  它不仅仅与电视有关,还与示波器、雷达、X 光机、电子的发现和光电效应有关。 这中间的故事我们下次接着聊。

▲ 图1.6.1 阴极射线管电视机


参考资料

[1]

Howard Armstrong & Frequency Modulation: History and Physics: https://www.youtube.com/watch?v=g1RiAmB1J5k

[2]

Kathy老师讲述的有趣科学历史: https://zhuoqing.blog.csdn.net/article/details/128637281

 

推荐阅读:

1还在用CAM350吗?

2、手撕Boost!Boost公式推导及实验验证

3、手撕Buck!Buck公式推导过程

4、我写的东西都在这里了


硬件工程师炼成之路 硬件工程师的分享、交流、学习的地方。
评论 (0)
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 134浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 54浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 125浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 42浏览
  • 在物联网(IoT)短距无线通信生态系统中,低功耗蓝牙(BLE)数据透传是一种无需任何网络或基础设施即可完成双向通信的技术。其主要通过简单操作串口的方式进行无线数据传输,最高能满足2Mbps的数据传输速率,可轻松实现设备之间的快速数据同步和实时交互,例如传输传感器数据、低采样率音频/图像与控制指令等。低功耗蓝牙(BLE)数据透传解决方案组网图具体而言,BLE透传技术是一种采用蓝牙通信协议在设备之间实现数据透明传输的技术,设备在通信时会互相验证身份和安全密钥,具有较高的安全性。在不对MCU传输数据进
    华普微HOPERF 2025-01-21 14:20 61浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 98浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 67浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 66浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 160浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 93浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦