【半导光电】GaN外延生长方法及生长模式

今日光电 2023-06-10 18:00

今日光电

       有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。欢迎来到今日光电!



01

GaN 异质衬底外延生长方法



由于GaN在高温生长时N的离解压很高,很难得到大尺寸的GaN单晶材料,因此,为了实现低成本、高效、高功率的GaN HEMTs器件,研究人员经过几十年的不断研究,并不断尝试利用不同的外延生长方法在Si衬底上实现高质量的外延生长GaN基材料。GaN材料的生长是在高温下,通过TMGa分解出的Ga与NH3的化学反应实现的,生长GaN需要一定的生长温度,且需要一定的NH3分压。

当前GaN的外延生长方法有:氢化物外延生长法(HVPE)]、分子束外延(MBE)和金属有机化学气相沉积法(MOCVD),其特点如下表2-1所示。


1.1 金属有机物气相沉积法(MOCVD



MOCVD(金属有机物气相沉积法)是在气相外延生长的基础上发展起来的一种新型气相外延生长技术。在采用MOCVD法制备GaN单晶的传统工艺中,通常以三甲基镓作为镓源,氨气作为氮源,以Si作为衬底,并用氢气和氮气的混合气体作为载气,将反应物载入反应腔内,加热到一定温度下使其发生反应,能够在衬底上生成GaN的分子团,在衬底表面上吸附、成核、生长,最终形成一层GaN单晶薄膜。采用MOCVD法制备的产量大,生长周期短,适合用于大批量生产,但生长完毕后需要进行退火处理,最后得到的薄膜可能会存在裂纹,会影响产品的质量。



1.2 分子束外延法(MBE



MBE法(分子束外延法)制备GaNMOCVD法类似,主要的区别在于镓源的不同。MBE法的镓源通常采用Ga的分子束,NH3作为氮源,制备方法与MOCVD法相似,也是在衬底表面反应生成GaN。用该方法可以在较低的温度下实现GaN的生长,一般为700 ℃左右。较低的温度可以有效减少反应设备中NH3的挥发程度,但低温使得分子束与NH3的反应速率减小。较小的反应速率可以在制备过程中对生成GaN 膜的厚度进行精确控制,有利于对该工艺中的生长机理进行深入研究,但对于外延层较厚的膜来说反应时间会比较长,在生产中发挥的效率欠佳,因此该方法只能用于一次制备少量的GaN薄膜,尚不能用于大规模生产。



1.3 氢化物气相外延法(HVPE



HVPE(氢化物气相外延法)与上述两种方法的区别还是在于镓源,此方法通常以镓的氯化物GaCl3为镓源,NH3为氮源,在衬底上以1000 ℃左右的温度生长出GaN晶体。用此方法生成的GaN晶体质量比较好,且在较高的温度下生长速度快,但高温反应对生产设备,生产成本和技术要求都比较高。
采用以上传统方法制备GaN薄膜,对其质量好坏的主要影响因素是Si与薄膜晶格的相配程度。欲制备无缺陷的薄膜,首先要满足两者之间尽量小的晶格失配度;其次,两者的线膨胀系数也要相近。

1-1 GaN外延生长方法的优缺点


制备方法
外延生长过程
优点
缺点
氢化物气相外延法
在金属镓上流过HCl,形成GaCl蒸汽,当他流到衬底上,与氨气反应,沉积形成GaN
①生长速度快
②可以比较精确地控制膜厚
①高温反应对生产设备、生产成本和技术要求都比较高。
金属有机物气相沉积法
气体或者固体分子在高温下热裂解生成团簇,通过载气扩散到基片上,在催化剂的作用下排列、反应、生长、沉积。
①适合于工业化生产
GaN晶体质量好
①过程比较复杂
②反应速率影响因素多
③温度高,原材料消耗大
分子束外延法
在真空中亿原子束或分子束溅落到衬底上,并在衬底上按一定的结构有序排列,形成晶体薄膜。
①生长温度低
②生长反应过程简单
③实时监控生长表面的结构、成分和膜厚,均匀性较好
①生长速率慢
②不能满足大规模商业化生产的要求
③采用等离子体辅助方式时,容易造成高能离子对于薄膜的损伤


 
经过分析了不同的GaN外延生长方法,虽然分子束外延技术可以在较低的温度下实现GaN的生长,其生长反应过程简单,可以实时监控生长表面的结构、成分和膜厚,生长温度低,均匀性较好,但是由于这种方法的生长速率较慢,可以精确地控制膜厚,不能满足大规模商业化生产的要求,而且当采用等离子体辅助方式时,容易造成高能离子对于薄膜的损伤。而金属有机化学气相沉积法的生长速率适中,可以比较精确地控制膜厚,特别适合于工业化生产GaN基外延材料,这种方法目前已经成为使用最多、外延生长材料和器件质量最高的方法。





02

异质外延生长的基本模式




一般来讲,异质外延有三种生长模式:Frank-van der Merwe 生长模式(层状生长模式)、Volmer-Weber生长模式(岛状生长模式)和Stranski-Krastanow生长模式(先层状生长再岛状生长)[30-32],这三种生长模式如图4-1所示。


2.1 Frank-van der Merwe 生长模式

-层生长模式一般发生于晶格常数比较匹配,晶格失配较小,衬底与外延层之间的键能较高的两种异质材料之间。当外延层材料的的表面自由能σf与界面能σi之和远小于衬底材料的表面自由能σs时,衬底材料将非常强烈地趋于完全覆盖衬底表面(即层-层生长模式),也就是外延层与衬底浸润,因为此生长模式会使整个体系的总表面自由能降低。于是沉积物质会先在衬底表面二维成核再扩展成层,然后在一层生长结束后再进行下一层的生长,如此按逐层生长的模式进行。

2.2 Volmer-Weber 生长模式

σsfi时,外延层与衬底表面不能形成浸润层,为了使表面能降低以使外延层材料的表面面积最小化,外延层材料会在衬底表面形成许多三维小岛。随着外延层材料沉积的继续进行,这些众多的小岛逐渐长大形成柱状岛,并彼此汇聚,最终形成表面粗糙的薄膜。在岛状结构中会有释放应变产生的失配位错,岛与岛之间存在着小角度的取向差别,在彼此汇聚时会产生位错密度很高的边界层。

2.3 Stranski-Krastanow生长模式

当外延层材料的表面自由能σf与界面能σi之和略大于或者略小于衬底材料表面自由能σS时,外延生长会大大依赖于衬底与外延层之间的晶格匹配情况。GaN在蓝宝石衬底上的异质外延生长就属于此种情况。一开始生长时外延层材料与衬底浸润,先形成几个原子层厚度的浸润层。随着沉积的进行,应变逐渐积累,最后会通过形成三维岛的形式来释放应力。由于应变能不是通过形成位错来释放的,所以小岛中不含有位错。


----与智者为伍 为创新赋能----
源:半导体封装工程师之家



申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈

投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566


评论
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 141浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 109浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 138浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 114浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 92浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 107浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 126浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 143浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 170浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 103浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 90浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦