谁懂啊!OSPF路由协议看这篇就够了!

原创 中兴文档 2023-06-08 18:02

趣解路由系列发布之后,文档君收到了好多关于OSPF的留言。为了满足各位粉丝们的要求,这不,文档君带着大量OSPF干货,来啦~


PART.01
RIP为啥“过气”?
如果想好好说说OSPF,那就不得不从最“古老”的路由协议之一—RIP(Routing Information Protocol,路由信息协议)开始讲起。

RIP最突出的特性是使用跳数(报文经过路由器的个数)作为路由好坏的度量:跳数最小即认为该路由最优。



随着网络的发展,链路(设备之间的传输通道)的种类和特性不断升级变化,仅仅考虑跳数已经不能客观反映路由的优劣了。

例如到达同一个目的地,有两条路径:A→BA→C→D→B


虽然A→B路径最短,但是实际应用的时候并不合适,以网络带宽和链路状态来衡量网络质量会更加合理,比如在上图中采用带宽更大的A→C→D→B路径效果更好。

同时,RIP限制最大跳数为15,跳数16就变成了RIP路由协议“不可到达的远方”~因此RIP无法用于搭建大规模的网络。


RIP“过气”不只因为可扩展性差,还有收敛速度慢易产生环路的缺点,但是在这里就不过多介绍啦~


PART.02
OSPF是如何计算路由的?

接下来,就要隆重介绍下动态路由协议中的当红炸子鸡—OSPF(Open Shortest Path First,开放最短路径优先)啦!

与RIP不同,OSPF是一种链路状态路由协议,它可以收集路由器周边的拓扑变化,并形成一个靠谱的路由结构。

如果说RIP提供的是路标,只告诉你下一步该怎么走,转来转去还是容易迷路(产生环路)。那么OSPF提供的就是地图了,每个运行OSPF协议的路由器上都有一张完整的网络图。地图在手,迷路不再有!


OSPF的花费(cost)可以是路由距离、链路的吞吐量或链路的可靠性,这种路由度量相比于RIP协议的跳数更加灵活和准确,并且适用于更大更复杂的网络。

以下图所示的网络为例,说明OSPF计算出路由的过程。

下图是由四台路由器组成的网络,连线旁边标注了从一台路由器到另一台路由器所需要的花费(cost)。为简化问题,我们假定同一链路连接的两台路由器之间互相发送报文所需花费是相同的。

首先,每台路由器都根据自己周围的网络拓扑结构生成一条LSA(链路状态广播),并通过相互之间发送OSPF协议报文将这条LSA发送给网络中其他所有的路由器。这样每台路由器都收到了其他路由器的LSA。将所有的LSA放在一起称作LSDB(链路状态数据库)。显然,这四台路由器的LSDB都是相同的。



其次,由于一条LSA是对一台路由器周围网络拓扑结构的描述,那么LSDB则是对整个网络拓扑结构的描述。路由器将LSDB转换成一张矢量权重图,这张图便是对整个网络拓扑结构的真实反映。那么,这四台路由器得到的是一张完全相同的图。



最后也是最重要的是,每台路由器都会以自己为根节点,使用最短路径优先(SPF)算法计算出一颗最短路径树(选择cost值最小的那条路径),通过最短路径树生成到网络中其他路由器的最短路由,形成路由表。这4台路由器各自得到的路由表是不同的。



从上面的分析可以得出,OSPF协议计算出路由主要有以下3个主要步骤。

  1. 描述本路由器周边的网络拓扑结构,并生成LSA。

  2. 将自己生成的LSA在自治系统里传播,并同时收集所有的其他路由器生成的LSA。

  3. 根据收集的所有LSA计算出路由。

OSPF计算路由的方法就是这么简单~~

那为什么说OSPF更适合大型网络呢?


PART.04
OSPF如何适应大型网络的?

我们一起来看看OSPF适应大型网络有哪些高招!

回想我们上学的时候,老师是怎么管理一个班的学生呢?

文档君替你回答:当然是分小组、选组长啦!







分小组:划分网络区域





OSPF应用于大型网络时,比如网络中可能有几十台或者上百台路由器。

当这些路由器运行OSPF协议,并传递、收集LSA时,网络中会充斥着这些协议报文,这样的LSDB容量会很大,运行SPF算法会很慢,不利于路由的正常计算和转发。

OSPF中通过设置区域来解决这个问题。如图所示,将一个大型网络分割成若干个小网络,每个小网络称为一个区域(Area),用一个数字来对区域编号。其中,区域0称为骨干区域,其他非0编号的区域称之为非骨干区域,并规定非骨干区域必须和骨干区域相连。



经过这样的处理后,OSPF有以下优点。
  • 只有同一区域内路由器的LSDB会保持同步,路由的变化首先在本区域内更新。
  • 路由更新信息在传递给别的区域时,可在区域边界路由器(ABR)上进行路由聚合,以减少通告到其他区域的LSA数量,可将网络拓扑变化带来的影响最小化。

这样可以很好地解决路由计算和转发速度慢的问题。当然,在实际组网应用时,OSPF还根据不同的区域特点,定义了很多计算路由的优化方法,这里就不一一展开描述了。

我们知道在OSPF协议中要求每个区域与骨干区域(Area 0)必须直接相连,但是实际组网中,网络情况非常复杂,有时候在划分区域时,无法保证每个区域都满足这个要求。这时候就需要虚链接技术来解决这个问题。

虚链接是指在两台ABR之间,穿过一个非骨干区域(也称为转换区域,Transit Area),建立的一条逻辑上的连接通道(需在两端的ABR上同时配置)。


如上图所示,在路由器C路由器E之间建立了一条虚链接,使Area3和骨干区域Area0之间有了逻辑连接,Area1为转换区域。
“逻辑通道”是指两台ABR之间的其他运行OSPF的路由器只是转发报文,相当于在两个ABR之间形成了一个点到点的连接,因此在这个连接上,与物理口一样可以配置接口的各类参数。







选组长:OSPF选举





在广播和NBMA(Non-Broadcast Multiple Access,非广播多路访问)类型的网络上,任意两台路由器都需要传递路由信息。如果网络中有N台路由器,那么则要建立“N×(N-1)/2”次的传递。这是没有必要的,而且浪费了宝贵的带宽资源。


为了解决这个问题,OSPF协议指定一台路由器作为“组长”——DR(Designated Router,指定路由器)来负责传递信息。所有的路由器都只将路由信息发送给DR,再由DR将路由信息发送给本网段内的其他路由器。

两台不是DR的路由器(DR Other)之间不再建立邻接关系,也不再交换任何路由信息。这样在同一个网段之间只需要建立N-1个邻接关系,每次路由变化只需要进行2×(N-1)次的传递即可。


选组长的方法虽然非常有效,但是万一组长不在,整个组的同学谁来负责管理呢?

所以OSPF也定义了“副组长”—BDR(Backup Designate Router,备用指定路由器)。

BDR是DR的一个备份。在选举DR的同时也选举出BDR,BDR也和本网段内的所有路由器建立邻接关系并交换路由信息。


一旦DR失效,BDR会立即变成DR。由于不需要重新选举,而且邻接关系事先已经建立,所以BDR替代DR的过程非常短暂。BDR成功“上位”为DR后,还需要再重新选举出一个新的BDR,但是这个选举过程不会影响路由的计算。


通过前面对OSPF的介绍,不知道粉丝们是否有所收获呢?

还有哪些想了解的路由知识呢?请在评论区给文档君留言喔~

想第一时间收到我们的更新吗?

只需两步,为文档君加上“爱你一万年”星标⭐!

没有星标,你爱的文档君就要跟你失联啦~

我们是一群平均从业年限5+的通信专业工程师。
关注我们,带你了解通信世界的精彩!

中兴文档 通俗易懂且高颜值的通讯技术文档!
评论 (0)
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 430浏览
  • 文/Leon编辑/cc孙聪颖‍《中国家族企业传承研究报告》显示,超四成“企二代” 明确表达接班意愿,展现出对家族企业延续发展的主动担当。中国研究数据服务平台(CNRDS)提供的精准数据进一步佐证:截至 2022 年,已有至少 280 家上市家族企业完成权杖交接,其中八成新任掌门人为创始人之子,凸显家族企业代际传承中 “子承父业” 的主流模式。然而,对于“企二代” 而言,接棒掌舵绝非易事。在瞬息万变的商业环境中,他们既要在白热化的市场竞争中开拓创新、引领企业突破发展瓶颈,又需应对来自父辈管理层的经
    华尔街科技眼 2025-05-06 18:17 16浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 182浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 162浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 258浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 234浏览
  • 在过去的很长一段时间里,外卖市场呈现出美团和饿了么双寡头垄断的局面。美团凭借先发优势、强大的地推团队以及精细化的运营策略,在市场份额上长期占据领先地位。数据显示,截至2024年上半年,美团外卖以68.2%的市场份额领跑外卖行业,成为当之无愧的行业老大。其业务广泛覆盖,从一线城市的繁华商圈到二三线城市的大街小巷,几乎无处不在,为无数消费者提供便捷的外卖服务。饿了么作为阿里本地生活服务的重要一环,依托阿里强大的资金和技术支持,也在市场中站稳脚跟,以25.4%的份额位居第二。尽管市场份额上与美团有一定
    用户1742991715177 2025-05-06 19:43 35浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 290浏览
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 48浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 164浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦