Mater.Today:水系锌离子电池电解质设计原则

锂电联盟会长 2023-05-31 10:12

点击左上角“锂电联盟会长”,即可关注!

01


导读


为了追求安全性和成本,人们开始关注水系电池。水系电解质有许多吸引人的优点,如不易燃和环保,但也有能量密度低的缺点。为了解决这一问题,人们开始重新配制水系电解质,但前提是要了解电解质的物理性质和电化学性能之间的相互作用。

02


 成果简介


近期Materials Today期刊上发表了一篇题为“Electrolyte formulas of aqueous zinc ion battery: A physical difference with chemical consequences”的综述。该综述从电解液的组成出发,讨论了锌离子电池电解液是如何导致不同的电化学性能。通过对电池电化学性能的五个指标进行评价,为不同用途的电池提供了一种电解质设计策略。

03


核心内容解读


1. (a)Bruce-Vincent法测量离子电导率示意图。(b)α-MnO2正极放电过程示意图@Elsevier
电导率和转移数
电解液最重要的特性是能足够快地输送载流子。溶剂在电导率中起着重要的作用,这不仅是因为盐在特定溶剂中的浓度限制,还因为电荷载流子在溶剂化过程中在溶液中移动。为了量化离子在溶液中的输运能力,离子电导率(σ)表示为所有带电物质输运的总和。
其中离子的电荷(zi)、浓度(ci)和迁移率(μi)影响离子电流的贡献。然而,对于摇椅型电池,溶液的高离子导电性并不能直接转化为良好的电化学性能,因为离子导电是所有离子物种(正电荷和负电荷)集体运动的结果,而法拉第电流仅由一种离子(大部分正电荷)平衡。为了解耦不同离子对离子传导的贡献,迁移数(ti)表示为
与溶液中其他离子相比,较高的ti对总离子电流的贡献更高,迁移率也相对较高。对于电池的工作,一个好的电解质不仅需要高离子电导率,还需要高载流子转移数,供应足够的载流子,以通过法拉第反应被氧化/还原。
在非水系电解质(碳酸盐或醚基)中,溶剂极化程度较低,难以移动,1M浓度可实现最大电导率(~10 mS/cm),提供足够的阳离子来运输,而不会增加电解质的粘度。由于非质子溶剂的简单性,Li+将是主要的正离子物种,其转移数为~0.4,比未溶剂化的阴离子略慢。
由于水作为溶剂的高介电常数,水系ZIB电池的电导率是非水系电池的10倍。典型的1 M ZnSO4水系电解质离子电导率为~50 mS/cm,然而,由于存在H+,这种高电导率可能被高估了,因为H+传导的跳跃机制也会贡献电流。增加Zn2+的浓度不仅会增加电解液的导电性,还会使溶液酸化,从而诱导更多的质子从水中排出,这些质子的跳跃机制极大地提高了离子的导电性,但对电池的运行不利。
显然,水溶液的高导电性是以Zn2+的低迁移数和H+的高迁移数为代价的。有没有办法在测量中区分它们?不幸的是,经典的Bruce-Vincent方法是基于锌是唯一氧化还原活性物质的假设,这是不正确的,因为H+/H(SHE, 0 V)的氧化还原电位高于Zn2+/Zn(-0.78 V vs. SHE)。更具体地说,它用稳态电流除以脉冲电流来计算传递数:
但稳态电流由Zn2+沉积和H+还原共同贡献,计算值为H+Zn2+迁移数之和(图1a)。更糟糕的是,电解质浓度远远超出了Bruce-Vincent方法的准确度范围(低于0.01 M)。当ZnCl2ZnSO4浓度超过~0.14 M时,Zn2+的转移数急剧下降。但在电解质中,这些离子对并不构成离子电流(负电荷离子对甚至抵消离子电流),如图1b所示。
2. (a)不同浓度ZnCl2溶液的拉曼光谱。(b)沿[000](左)和[001](右)投影方向放电α-MnO2的扫描透射电镜(STEM)分析。(c)α-MnO2在第一次循环和第二次放电时的XRD。@Elsevier

飞秒受激拉曼光谱(FSRS)揭示了ZnCl2水溶液(5~30摩尔浓度(m))中离子的形态,作为离子对存在的有力证据(图2a),其中[Zn(OH2)2Cl4]在所有浓度中占主导地位,而Zn[(OH2)6]2+的强度要弱得多。在几种不同的溶液中也观察到这种正负离子形态。不幸的是,水系锌电池本质上总是会被离子对和质子纠缠,因为不仅Zn2+电导率的精确测量受到H+干扰,甚至ZIB正极的电化学性能也可能受H+(脱)插层的影响(图1b)。MnO2作为典型正极,其工作机理由于H+和Zn2+的共存而变得复杂。在各种相中,α-MnO2首先以质子为MnO2→MnOOH转化反应的主要载流子,但后来这一机制与Zn2+插入和Zn2+/H+共插入的报道相矛盾,使其工作机制更加复杂。在H+转化、H+(脱)插嵌和Zn2+/H+共(脱)插嵌之间还没有达成一致。Lu等人最近提出利用高角度环形暗场(HAADF)分析放电后的α-MnO2,其缺少重离子的空通道支持H+的(脱)插嵌机制(图2b)。根据原位XRD, α-MnO2图案在所有荷电状态中都存在(图2c),因此排除了转换型机制。α-MnO2在硫酸锌电解液中复杂的工作机理归结为在保持隧道结构的同时(脱)插嵌H+

3. (a)在1 m Zn(TFSI)23种LiTFSI浓度(5 m, 10 m和20 m)的电解质中Zn2+的溶剂化结构。(b)25°C时不同浓度电解质(LiTFSI-H2O)中Li+的电导率和流动性。(c)加入甲醇后Zn2+溶剂鞘的变化示意图。(d)不同电解质的LSV扫描,其中33%和50%代表甲醇的体积百分比。(e)不同EG/H2O比下电解质的离子电导率(f)甲醇/水混合物闪点随浓度的变化。(g)不同K值配体的分子模型。(h)不同配体Cu/Zn半电池的CE稳定性@Elsevier

电化学稳定窗口(ESW)
水较窄的稳定性窗口一直是水系电池的致命弱点,这也限制了AZIB的能量密度。为了扩大ESW,人们做了很多努力,如设计集流体、共溶剂和电解液净化。本节倾向于关注高浓盐水系电解质(WISEs)及其对体电解质电化学性能的影响。
电解质中的电荷载体被水溶剂化,无论是沉积在负极上还是嵌入正极,都在界面处脱溶剂。这种去溶剂化导致自由水在电场最强的界面处聚集,随后,水被电化学分解成H2(HER)或O2(OER)。通过引入高浓度,Zn2+溶剂化鞘中的自由水被阴离子取代(图3a),从而抑制了水的分解,最终扩大了ESW。谨慎的读者可能会在这里发现一个悖论,即Zn2+-阴离子对在前一节中损害了电解质的导电性,但在这里有利于ESW的扩展。事实证明,较高的浓度通常会导致许多WISEs的ESW扩展和电导率降低(图3b)。
按照同样的逻辑,研究人员可以实现类似的溶剂化鞘替换,而不必将浓度调得太高而不切实际。具有较高古特曼给体数的溶剂倾向于优先溶剂化阳离子,如将DMSO(给体数29.8)加入稀释的ZnSO4水溶液(H2O的给体数:18)中,用DMSO取代部分水,形成[Zn(H2O)4(OH)3(DMSO)]等配合物。这样,电解质的阴极稳定性得到改善,库仑效率(CE)也随之提高。
各种有机溶剂被作为有效的电解质添加剂来扩大水系电解质的ESW。例如,添加50 v%的甲醇能够用于Zn2+溶剂化结构重建和拓宽ESW (图3c和3d),其他具有电子密集位点(通常为N或O基团)的有机溶剂也被广泛报道为助溶剂,如乙腈、乙二醇和1,4-二恶烷等。但需要指出的是,有机溶剂的加入也有其局限性。例如,随着EG/H2O电解质混合物中EG含量的增加,离子电导率在室温下明显下降,这通常会导致更差的倍率性能和高电压滞后(有时被误解为更宽的ESW)。此外,添加有机溶剂带来的一个更致命的问题是电解质的可燃性更高,如图3f所示,当甲醇/水混合物中的甲醇浓度增加时,闪点低于室温。除助溶剂策略外,螯合剂可以在不改变水系理化性质的情况下与Zn2+产生较强的配位作用。Yang等人比较了各种螯合配体的稳定常数(K)作为Zn2+与配体结合强度的指标,结果表明,K值最高的乙二胺四乙酸通过更少的HER和最长的循环稳定性表现出更好的阴极稳定性(图3g和3 h)。然而,由于与Zn2+的螯合强度通常太强,Zn2+在溶液中无法保持电离,因此此类螯合剂添加剂应谨慎处理。
4. (a)在WISE(21 m)中预形成SEI后,组装LiMn2O4/Mo6S8全电池。(b)不同TiO2晶面上的锌电镀过程示意图。(c)10次循环后(001)面涂层的SEM和相应的EDX映射图。(d)经磷酸处理1、2、4 min的Zn箔XRD谱图。(e)裸锌和锌compound@Zn样品的I(002)/I(100)比。(f)2 M ZnSO4电解液中Zn负极上的界面反应以及CO2净化电解液中这些副反应的抑制示意图。(g)CO2净化电解液(上)和空白电解液(下)中循环锌负极的SEM横截面图。(h)高放电深度下薄锌箔对称电池试验。@Elsevier

固体电解质界面相(SEI)
固体电解质间相(SEI)曾被认为是非水系电解质的特有产物,因为水的分解产物(H2和OH-)不会在负极上形成固体保护层。然而,在水系电解质中仍然观察到SEI,并且大多数与高浓度的WISE有关:首先,WISEs中阳离子和阴离子的接触离子对提高了阴离子的还原电位,这使得阴离子的分解优先于HER,构成了SEI的成分;其次,稳定的SEI需要最大限度地减少溶解。Wang等人的研究表明,即使是在20 m LiTFSI中稳定且结构良好的SEI,也会迅速溶解在稀释的1 m LiTFSI溶液中,导致不可逆性很高(图4a)。
除了浓度诱导的SEI外,人工SEI在保护锌负极方面也显示出一定的功能。对于一个好的人工涂层,主要有两个挑战:1、在温和酸性水环境下保持结构;2、允许Zn2+渗透沉积在涂层下,而不是生长在涂层上,同时阻止H2O的还原。Wang等人比较了TiO2各晶面Zn2+亲和力的差异。通过设计低Zn2+亲和力(001)晶面,进一步避免了Zn在涂层上的成核,确保了TiO2层下光滑均匀的Zn沉积形貌(图4b和c)。此外,磷酸锌与Zn的(002)面具有良好的晶格匹配度(图4d和e),这是一个众所周知的无枝晶外延生长晶面。因此,H3PO4诱导的(002)取向Zn生长延长了循环寿命,且形貌更加光滑。尽管证明了这种方法的有效性,但这种单相无机材料在沉积/剥离过程中Zn体积发生较大变化后,其刚性可能破坏结构的完整性。
电解质中溶解的CO2通常促进SEI的形成(图4f)。与LIB体系类似,用CO2清洗电解液可以获得更好的循环稳定性,形成富含Li2CO3的稳定SEI。Zhong等人报道了AZIB中类似的行为,与空白电解质的粗糙锌形貌相比,在CO2净化电解质中循环300次后,锌表面形成了致密的保护层。得益于这种涂层保护,即使在高放电深度(DOD)下,循环稳定性也大大提高,如图4h所示。
5. (a)不同离子在冰中的Arrhenius离子电导率图。(b)水和电解质的结构演变示意图,以及低Tf溶液的设计。(c)非对称Zn/Cu电池70℃时/剥离锌的电压分布图。(d)Zn金属负极在0°C(左)和20°C(右)循环的SEM图。@Elsevier

低温
越来越极端的天气引起了人们对低温电池的关注。低温带来的电解质粘度增加等不利因素导致倍率性能变差,电解质冻结甚至电池失效。对于水系电池,尽管含有某些盐的冷冻电解质(冰)显示出高的离子电导率(Li2SO4为1 mS/cm),可能被用作固体电解质(图5a),但这仅仅是理论推测。一个更被广泛接受的策略是通过调整电解质浓度来调节电解质的冰点(Tf)。冷冻可以看作是水分子有序重组的结晶过程。通过添加电解质盐,H2O的O2-与Zn2+相互作用,而不是与其他水分子的H+相互作用,从而破坏分子间的氢键。减少的氢键网络为H2O的结晶创造了能垒,从而降低了Tf(图5b)。进一步增加浓度,形成阴阳离子对,使O2–-Zn2+相互作用减弱,Tf再次升高。按照这个思路,Chen等人通过溶解7.5 m的ZnCl2,将水系电解质的液态保持到-90°C。阳离子和阴离子在破坏H2O分子间氢键(HB)网络中都起着重要作用。有趣的是,由于抑制了HER反应,锌的沉积/剥离在低温下表现出更高的可逆性,并且沉积的锌形貌更光滑。7.5 m ZnCl2溶液的库仑效率从25℃时的97.93%提高到−70℃时的99.52%(图5c)。在3 M Zn(CF3SO3)2中进行了更多的形貌差异研究,其中循环Zn在0°C下保持光滑致密的表面,没有枝晶。而在20°C下循环的Zn表面变得粗糙和松散(图5d)。

04


成果启示


本综述从五个指标评估了AZIB电解质的作用,并揭示了不同电解质成分/浓度下电化学性能的巨大差异。从实用的角度来看,没有哪一种电解质配方能适用于所有的电池。较高浓度的电解质无疑会扩大ESW并促进SEI的稳定性,然而,它也会产生离子对,从而增加电解质粘度,降低离子电导率,提高溶液的冰点。对于高倍率性能和快速充电,Zn2+的快速传导优先于其他指标,并尽可能减小离子对/H+共传导。因此,超高浓度可能不适合高倍率性能。在低温方面,电解液浓度过低或过高都会导致水过早结晶,不能保持液态,阻碍Zn2+的传导。由于1、SEI形成带来更高的可逆性,而盐包水电解质导致水的反应性降低。2、在有限的电解液中加入更多的Zn2+可以补偿电极长期运行的不可逆性,所以WISE有望表现出更好的电化学性能。

05


参考文献


Yunkai Xu, Xing Zhou, Zhengfei Chen, Yang Hou*, Ya You*, Jun Lu*. Electrolyte formulas of aqueous zinc ion battery: A physical difference with chemical consequences, Materials Today, 2023.
https://doi.org/10.1016/j.mattod.2023.04.005






来源:新威NEWARE
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。

相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法!
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 144浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 98浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 96浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 108浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 158浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 167浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 126浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 124浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 204浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 223浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 66浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 61浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 117浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 70浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦