软包装锂电池的短路失效分析!

锂电联盟会长 2023-05-29 10:17
点击左上角“锂电联盟会长”,即可关注!

相对于圆柱形和方形电池,软包装锂电池因尺寸设计灵活、能量密度高等优势,应用越来越广泛。短路测试是评价软包装锂电池的一种有效手段。本文通过分析电池短路测试的失效模型,找出影响短路失效的主要因素;通过进行不同条件的实例验证,分析失效模型,提出了改善软包装锂电池安全性的建议。


1 短路测试模型分析

在短路测试中,待测电池通过导线与外部电阻连接,利用开关控制闭合,如图1所示。其主要特点是回路内瞬间通过大电流,产生焦耳热,并在几秒的时间内持续累积,对测试电池造成热量冲击。通常在电池表面的中央位置装配热电偶来记录温度变化。

图 1 软包装锂电池的短路测试回路示意图

短路测试的回路主要分为四个部分:电芯、正极耳、负极耳和外部电阻。其中,电芯由集流体、电极物质、电解液和隔膜等部件组成,正极耳为含胶金属铝带,负极耳为含胶金属镍带或铜镀镍带。回路总电阻由上述四部分电阻串联组成,需要注意的是电芯电阻为直流内阻,而非交流内阻。开关闭合后,电池开路电压作用在四部分电阻上,产生较大的瞬间电流,并转换成热量释放。


短路瞬间的电流可通过欧姆定律计算,如式(1):

式中:i为短路瞬间电流;OCV为短路前的电池开路电压;R1、R2、R3和R4分别为电芯电阻、正极耳电阻、负极耳电阻和外部电阻。


另一方面,软包装锂电池的结构特点是电芯采用铝塑材料进行封装,即通过边缘处铝塑的热熔粘合实现内部材料与外部环境的隔绝。在正、负极耳位置,一般采用极耳胶过渡的方法来封装。然而,该位置通常是封装薄弱区域(见图1),在通过较大热量时存在熔化和开裂的风险。一旦该处封装开裂,电解液有可能发生泄漏,并在一定的条件下发生起火甚至爆炸等安全事故。温度是影响封装可靠性及是否起火的重要因素,通常会随着温度的升高而增大电池失效发生概率,因此短路测试中需要关注环境温度的影响。

2 商品化电池实测评估

2.1 测试样品与方法

为验证短路测试模型分析并考察不同测试条件的影响,采用某款商品化3Ah软包装锂电池进行测试。该款电池正极活性物质为钴酸锂,负极活性物质为人造石墨。短路测试中的外部电阻采用两种规格,分别为低阻值36mΩ和高阻值77mΩ环境温度分别为室温23℃和高温55℃。


电池在短路前充电至4.4V满电状态,并测量开路电压。对于高温测试,待电池表面温度达到55℃后进行短路。开路电压通过电池测试仪(HIOKI BT3562)测量,短路后电压数据通过TJE数据采集系统(ETDAS-220)采集,表面温度通过K型热电偶测量。电芯的直流内阻采用Arbin设备(BT-2000)通过大电流脉冲的方法测量。


2.2 测试结果与讨论

图2中显示了不同测试条件下电池表面温度随时间的变化曲线。当闭合开关后,电池表面温度在短路瞬间开始迅速上升,达到最高温度后又逐渐降至室温。图2中由a和b对比可知,室温条件下,使用不同阻值的外部电阻,电池的温度曲线表现出明显差异。

图 2 不同测试条件下的电池表面温度曲线

当外接低阻值时,表面温度在约160s后达到最高值116℃ ;当外接高阻值时,表面温度在约300s后达到最高值113℃。即电池表面的升温速度取决于外部电阻,外接电阻越小,电池升温越快。这是由于使用小电阻时,回路内的短路瞬间电流更大,瞬间释放的热量更多。另一方面,尽管升温速率不同,但短路后电池表面的最高温度十分接近,这表明短路后电池释放的能量与外部电阻没有直接关系。由c和d对比可发现,短路后的表面温度升高趋势与室温条件的测试相同。然而,电池表面升温速率并没有随外接电阻的不同而体现出明显差异。这可能是由于环境温度较高,补偿了电池自身因电流不同所产生焦耳热的差别。同时,外接不同电阻时,电池表面的最高温度不同。外接低阻值时,电池表面温度最高为78℃;外接高阻值时,表面温度最高为111℃。


为了估算短路瞬间的电流值,需要对电芯和正、负极耳的电阻进行测量和计算。在0.1C电流放电过程中,当达到一定的荷电状态(SOC)时改用1C电流放电1s,通过1C电流放电前后的电压和电流差值计算电芯直流内阻,结果列于表1中。

表 1 电池在不同荷电状态下的直流内阻

可以看到,直流内阻随着SOC的升高而减小,即电池在高电压下具有更小的直流内阻。需要注意的是,直流内阻随SOC的升高并不是线性变化的,而是表现为缓慢降低。如当SOC从10%升高至20%,直流内阻降低了约6.4%;而当SOC继续从20%升高至70%,直流内阻仅降低了约2.9%。而当电池在100%SOC(即满电状态)时,直流内阻会比70%时略有降低。为简便起见,本文中采用70%SOC时的直流内阻来估算短路电流值。


电池正、负极耳的电阻可通过电导率公式计算:
式中:R为电阻;ρ为电阻率;l、w和t分别为极耳的长度、宽度和厚度。

测得电池的极耳电导率和尺寸信息列于表2中。通过计算可得,正极耳电阻约为3mΩ,负极耳电阻约为8mΩ
表 2 正负极耳的电阻计算
根据公式(1)估算短路瞬间的电流值,结果列于表3中。可以看到,当采用低阻值时,短路瞬间电流可高达约40A;当采用高阻值时,电流可高达约28A。这相当于电池在瞬间内分别通过了约13.3C和9.3C的电流。
表 3 短路瞬间的电流值估算及失效现象
考虑到电池在短路瞬间的电芯电阻要小于70%SOC时的电阻,回路中通过的实际电流还会略大于上述估算值。根据焦耳定律可知,在一定的内阻和时间条件下,瞬间释放的焦耳热与电流的平方成正比。因此,当外接大电阻时,短路瞬间的电流相对较小,伴随释放较少的焦耳热,通过短路测试的概率也就越高。另外,室温测试的电池表面升温速率明显不同,外接大电阻时的升温速率要慢于外接小电阻时的情况。

3 短路失效机理分析
3.1 失效过程

软包装锂电池的短路失效通常包括漏液、开裂、起火和爆炸等现象,如图3所示。漏液和开裂一般发生在极耳封装薄弱区域,测试后可观察到该处的铝塑封装开裂;起火和爆炸是危害性更大的安全事故,而起因通常是铝塑开裂后,电解液在一定条件下发生剧烈反应。因此,对于软包装锂电池的短路测试,铝塑材料的封装状况是造成失效的关键因素。

图 3 漏液、开裂和起火短路失效现象

在短路测试中,电池的开路电压瞬间降为零,同时回路内通过大电流并产生焦耳热。根据式(3)可知,焦耳热的大小取决于电流、电阻和时间三个因素。虽然短路电流存在的时间很短,但由于电流较大仍然可产生很大的热量。该部分热量在短路后的较短时间内(通常为几分钟)逐渐释放,引起电池温度的升高(见图2)。随着时间的延长,焦耳热主要散失到环境中,电池温度也开始下降。因此推测,电池的短路失效主要发生在短路瞬间及其后较短的时间内。

在短路瞬间,电流流经电芯内部和正、负极耳所引起的温度升高是不同的。以55℃短路测试为例,用红外成像的方法检测短路瞬间的各部分温度,结果如图4所示,图4中P1、P2和P3分别标记负极耳、正极耳和电池表面位置。经检测可知,短路瞬间的负极耳温度为215.9℃,正极耳为90.4℃ ,而电池表面为52.0℃,即负极耳温度远高于正极耳和电池表面。这表明负极耳处是相对容易发生封装开裂的位置,该结果与图4中的现象是一致的。

图 4 短路测试电池的红外成像照片

软包装锂电池在短路测试时往往发生产气鼓胀的现象,这可能是由以下原因引起。首先是电化学体系的不稳定性,即大电流通过电极与电解液界面时造成了电解液的氧化或还原分解,气体产物充斥在铝塑封装内。该原因引起的产气鼓胀在高温条件下表现得较为明显,因为电解液分解副反应在高温下更容易发生。另外,电解液即使不发生分解副反应,也可能在焦耳热的作用下发生部分气化,尤其是蒸汽压低的电解液成分。该原因引起的产气鼓胀对于温度较为敏感,即电池温度降至室温时鼓胀基本消失。然而,无论是哪种原因引起的产气,短路时电池内部的气压升高均会加剧铝塑封装的开裂,增大失效的概率。

短路瞬间的大电流对锂电池的电化学体系也会造成一定的影响。锂电池的电极通常由活性物质、粘结剂和导电剂等材料组成。活性物质用来进行锂离子的嵌入和脱出,其外形是一次或二次结构的颗粒,并通过粘结剂粘结到一起。较大的电流会对颗粒聚集体造成冲击,引发多种力学失效,表现为局部粘结性降低,甚至活性物质颗粒脱落。在这种情况下,电池内部容易发生微短路,因而引起局部温度升高以及增大短路失效的风险。

3.2 设计改善
基于短路失效的过程与机理分析,软包装锂电池的安全性可从以下几个方面进行改善:优化电化学体系,降低正、负极耳电阻,提高铝塑封装强度。优化电化学体系可从正负极活性材料、电极配比和电解液等多个角度进行,从而提高电池对瞬时大电流和短时高热量的承受能力。降低极耳电阻可以减少该处的焦耳热产生及累积,从而降低对封装薄弱区域的热量冲击。提高铝塑封装强度可以通过优化电池制造过程中的参数来实现,从而降低发生开裂、起火和爆炸等失效的概率。

在上述方法中,降低极耳电阻可通过更换极耳材料实现,是比较简单易行的。由于负极耳是温度较高的位置,因此将负极耳由常用的镍带替换为铜镀镍带,后者的电阻约为前者的五分之一。分别采用镍带负极耳和铜镀镍带负极耳电池进行55℃短路测试,结果如图5所示。

图 5 镍极耳与铜镀镍极耳短路测试对比

4 结语
本文针对软包装锂电池的短路测试,进行了模型分析及商品化电池在不同条件下的实际测试,讨论了外接电阻和环境温度对短路测试的影响,并通过分析回路中电芯和正、负极耳的电阻,估算了短路瞬间的电流值。短路失效过程表明铝塑材料的封装开裂是引起各种失效的重要原因。基于短路测试的失效机理,可通过优化电化学体系、降低极耳电阻和提高封装强度等方法来改善软包装锂电池的安全性。
文献参考[1]黄冕, 孔令丽, 曹国强,等. 软包装锂离子电池的短路失效分析[J]. 电源技术, 2018, 42(4):4.
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com或微信Ydnxke。

相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法!
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论 (0)
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 70浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 145浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 200浏览
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 144浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 210浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 209浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 124浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 71浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 97浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 200浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 163浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 189浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 152浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦