单片机短按、长按实现方法

strongerHuang 2023-06-07 08:20

转自 | TopSemic嵌入式

在电子产品中经常用到按键,尤其是经常需要MCU判断短按长按这两种动作,本篇我们来专门聊下这个话题。

只谈理论太无聊,我们还是结合着实际应用来说明。之前写过一篇关于《CH573第一篇:实现自拍杆蓝牙遥控器1》的文章,例子默认的功能是蓝牙连接后不断的发送数据,从而不断的拍照。而实际中的遥控器通常是按一次按键,控制一次,我们在来实现该功能。

板子上只有两个按键,一个是RESET按键,一个是DOWNLOAD按键,我们使用DOWNLAOD按键,按键的一端接GND,另外一端接CH573的PB22引脚。

原理图中有一个NC的C5,但是实际板子上我却没有找到它,可能是版本不一致。

提前说明一下:CH573的代码里跑了TMOS(Task Management Operating System),可以理解为一个简单的操作系统,所以下面的代码一般的裸机代码看着略有不同,不过核心思想都是一样的,用在其他地方也很容易移植,只需要将其中的定时器部分改写即可。

最初我是这么做的,把PB22配置为上拉输入,开启下降沿中断,在中断服务函数里,启动一个事件,执行蓝牙发送。代码如下:

void Key_Init()
{
  GPIOB_ModeCfg( GPIO_Pin_22, GPIO_ModeIN_PU );
  GPIOB_ITModeCfg( GPIO_Pin_22, GPIO_ITMode_FallEdge );
  PFIC_EnableIRQ( GPIO_B_IRQn );
}
void GPIOB_IRQHandlervoid )
{
  if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
  {
      GPIOB_ClearITFlagBit( GPIO_Pin_22);
      tmos_set_event( hidEmuTaskId, START_REPORT_EVT );
  }
}

这么写能工作,但是有问题,就是经常会出现按一下误判为多次按下。原因大家应该都清楚,因为按键存在抖动,所以一次按下有可能进入多次进入中断。

理想中的按下-弹起波形是这样的:

但是实际由于按键抖动的存在,实际的波形可能是这样的:

不信的话你可以接上示波器看看,或者软件验证,比如在GPIO中断服务函数里,设置一个全局变量,让它每次进入中断后加1,按按键观察这个变量的值。

那么该如何消除抖动呢?一种方法是硬件消抖,即按键两端并联一个小电容(电容大小由按键的机械特性来决定),另外一种方法是我们今天要重点介绍的软件消抖。

方法一:常用的加延时函数

在中断服务函数中加一个比如10ms的延时函数,延时时间的长短取决于实际所用的按键特性,只要延时时间比抖动时间略大即可。原理很简单,加了延时就避开了抖动的这段时间,在延时之后判断引脚电平,如果为低电平就表示是按下。

void GPIOB_IRQHandlervoid )
{
  if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
  {
      mDelaymS(10);
      if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
          tmos_set_event( hidEmuTaskId, START_REPORT_EVT );
      GPIOB_ClearITFlagBit( GPIO_Pin_22);
  }
}

这个方法很简单,但是不好的地方是延时占用MCU资源。尤其是这里的BLE应用,在中断服务函数中执行时间长会引起蓝牙连接中断,所以这里不能这么用,我实际测试当按键按快一点就很容易引起蓝牙连接中断。

方法二:加定时器

它的原理和方法一类似,只不过是不在中断服务函数中阻塞等待,而是用一个定时器,代码如下:

void GPIOB_IRQHandlervoid )
{
  if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
  {
      GPIOB_ClearITFlagBit( GPIO_Pin_22);

      tmos_stop_task(hidEmuTaskId, START_DEBOUNCE_EVT);
      tmos_start_task(hidEmuTaskId, START_DEBOUNCE_EVT,16);
  }
}
    if(events & START_DEBOUNCE_EVT)
    {
        if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
        {
            PRINT("short press\n");
            tmos_set_event( hidEmuTaskId, START_REPORT_EVT );
        }

        return (events ^ START_DEBOUNCE_EVT);
    }

它的逻辑是每次抖动的下降沿重新开启10ms定时器,在定时器时间到之后判断IO电平状态来判断按键是否按下。

需要注意的是:10ms定时器不是一个周期性的定时器,它是一次性的,即时间到了之后就停止计时了。另外每次进中断后先让定时器重新重头开始计时。如果大家用其他代码实现时要注意这两点。

此方法的好处不像加延时函数那样占用MCU资源。我实际测试这个方法可用,不会引起蓝牙连接中断。

以上介绍了使用中断的方式来判断按键短按,可以看到它判断的依据是按键按下(由高电平变到低电平)这个状态。下面在方法二的基础上我们来实现长按的检测,判断长按的依据是按下后持续的维持一段时间低电平。代码如下:

if(events & START_DEBOUNCE_EVT)
{
    if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
    {
        PRINT("short press\n");
        tmos_set_event( hidEmuTaskId, START_REPORT_EVT );
        tmos_start_task( hidEmuTaskId, START_LONGCHECK_TIMER,16 );
    }

    return (events ^ START_DEBOUNCE_EVT);
}
    if(events & START_LONGCHECK_TIMER)
    {
        static int cnt=0;
        if(GPIOB_ReadPortPin(GPIO_Pin_22)==0)
        {
            cnt++;
            if(cnt>100)
            {
                PRINT("long press\n");
                tmos_stop_task( hidEmuTaskId, START_LONGCHECK_TIMER);
                cnt =0;
            }
            else
                tmos_start_task( hidEmuTaskId, START_LONGCHECK_TIMER,16 );
        }
        else
        {
            cnt=0;
            tmos_stop_task( hidEmuTaskId, START_LONGCHECK_TIMER );
        }

        return (events ^ START_LONGCHECK_TIMER);
    }

实现的逻辑是:当检测到短按时,再开启一个10ms定时器,在定时器到时之中判断电平状态,如果为低电平,就让cnt变量加1,否则cnt=0,当cnt>100,即低电平持续1s认为是长按。我在这里当判断到长按之后或者IO变高之后会停止掉这个定时器,否则周期定时,因为没必要一直开着定时器。

除了上述的中断方式,还可以使用轮询的方式来实现,代码如下:

void Key_Init()
{
  GPIOB_ModeCfg( GPIO_Pin_22, GPIO_ModeIN_PU );
}
if(events & START_KEYSCAN_EVT)
{
    KeyScan();
    tmos_start_task(hidEmuTaskId, START_KEYSCAN_EVT,160);// 100ms执行一次KeyScan()
    return (events ^ START_KEYSCAN_EVT);
}
bool key_press_flag = false;      // 按下标志
bool key_long_press_flag = false// 长按标志

void KeyScan()
{
  if(GPIOB_ReadPortPin(GPIO_Pin_22) == 0// 低电平
  {
    if(key_press_flag == false)
      tmos_start_task( hidEmuTaskId, START_LONGCHECK_TIMER, 1600 ); // 启动1s定时器

    key_press_flag = true;    // 置位按下标志
  }
  else if(key_press_flag == true// 高电平同时按键被按下过 ,表示是按下后的弹起
  {
      key_press_flag = false// 清除按下标志

      if(key_long_press_flag == false)// 短按后的弹起
      {
        tmos_stop_task(hidEmuTaskId, START_LONGCHECK_TIMER);
        PRINT("short press\n");
        tmos_set_event( hidEmuTaskId, START_REPORT_EVT );
      }
      else // 长按后的弹起
      {
          key_long_press_flag =false;
      }
  }
  else
  {
    key_press_flag = false;
    key_long_press_flag = false;
  }

}
if(events & START_LONGCHECK_TIMER)
{
    key_long_press_flag =true;
    PRINT("long press\n");
    return (events ^ START_LONGCHECK_TIMER);
}

上面的这段代码初次看着有点绕,但是看明白了之后会觉得这个实现逻辑还是挺好的,注释写了,这里不再详细解释了,我在多个项目里使用的都是它。它兼顾了去抖和短按/长按的检测,并且长按可以判断出长按按下/长按弹起。短按是检测到弹起时认为是短按动作。另外如果想同时支持多个长按,也很方便添加。

轮询和中断各有优缺点,大家可以根据实际情况来选择,你一般常用哪种方式呢?

------------ END ------------


●专栏《嵌入式工具
●专栏《嵌入式开发》
●专栏《Keil教程》
●嵌入式专栏精选教程

关注公众号回复“加群”按规则加入技术交流群,回复“1024”查看更多内容。



点击“阅读原文”查看更多分享。
strongerHuang 作者黄工,高级嵌入式软件工程师,分享嵌入式软硬件、物联网、单片机、开发工具、电子等内容。
评论
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 118浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 91浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 69浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 163浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 65浏览
  • 随着航空航天技术的迅猛发展,航空电子网络面临着诸多挑战,如多网络并行传输、高带宽需求以及保障数据传输的确定性等。为应对这些挑战,航空电子网络急需一个通用的网络架构,满足布线简单、供应商多、组网成本相对较低等要求。而以太网技术,特别是TSN(时间敏感网络)的出现,为航空电子网络带来了新的解决方案。本文将重点介绍TSN流识别技术在航空电子网络中的应用,以及如何通过适应航空电子网络的TSN流识别技术实现高效的航空电子网络传输。一、航空电子网络面临的挑战航空航天业专用协议包括AFDX、ARINC等,这些
    虹科工业智能互联 2024-11-29 14:18 100浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 69浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 76浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 163浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 119浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 151浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 151浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦