红外偏振成像系统性能评估模型

MEMS 2023-06-06 00:01

红外偏振成像系统快速发展且应用广泛,但评估其性能的成像系统性能模型发展不足。迫切需要能够与先进的偏振成像系统相匹配的性能模型。研究认为,搭建系统性能模型应该考虑几个基本条件:是否自动化、是否有应对非线性图像处理的能力、是否能在复杂环境下依旧保证性能评估的准确性。

据麦姆斯咨询报道,近期,北京理工大学光电学院和光电成像技术与系统教育部重点实验室的联合科研团队在《红外技术》期刊上发表了以“红外偏振成像系统性能评估模型”为主题的文章。该文章第一作者和通讯作者为王霞副教授,主要从事图像处理、红外偏振成像、光电探测等方向的教学和研究工作。

本文首次将深度学习方法引入性能模型,提出了一个自动化的基于图像的红外偏振成像系统性能模型。并通过红外偏振辐射原理仿真海面舰船数据集,基于该典型场景对模型展开测试。实验结果表明,该模型对于红外偏振成像系统的评估结果与人的主观感知具有较好的一致性。

模型结构与原理

图1展示了本文所提出模型的基本架构。模型由两个主要模块(图中灰色部分)构成:成像系统退化模块、性能感知模块(图中蓝色部分)。成像系统退化模块用于计算从光学系统捕捉场景到显示器显示的整个过程的退化反应。性能感知模块由PRI-YOLOv5网络和预测网络组成,这个模块负责接收退化图像,并判断目标的可识别、可确认概率。其中,PRI-YOLOv5网络基于原YOLOv5网络进行改进,用网络模拟观察者观察图像的信息提取过程和识别/确认图像中目标的判断过程。预测网络则学习图像内容与可识别/确认概率的关系,从而破除网络仅能判识已知目标(包含在数据集中)的局限性。在评估一个新的系统时,我们需要输入高质量的原始图像,并根据系统的硬件参数量身定制成像系统退化模块,退化完成后输入性能感知模块,从而得到最终的目标获取性能。

图1 基本系统性能模型结构(绿色)。灰色:两个主要模块; 蓝色:性能感知模块

成像系统退化模块

成像系统退化模块根据系统的参数模拟了系统的退化效应。退化主要来自于4个部分:光学系统、探测器、电子电路、显示器。有些系统集成了数字图像处理功能,这些功能的影响可以放在探测器退化后面模拟。尽管该退化模块对整个系统性能模型有重要的贡献,但这不是本文主要讨论的问题。我们参考文献,在频域来完成整个退化过程。

性能感知模块

性能感知模块是本文提出的系统性能模型的重要环节,该模块通过适当地训练深度学习网络,使其学习人眼对图像中目标判识的过程。再根据后续统计得出系统的目标获取性能。它包含了两个部分:PRI-YOLOv5网络和预测网络。

PRI-YOLOv5网络

YOLO是当前计算机视觉领域最热门的目标检测网络之一。自2016以来,YOLO系列网络不断朝着更优的方向发展。YOLOv5是其第五代版本,它采用CSPDarknnet53作为骨干网络(Backbone)、PANet作为颈部网络(Neck)、YOLO探测头作为头部网络(Head)。该网络的输出为图像中的每个目标标注预选框和标签。预选框代表着网络认为目标最有可能存在的位置,标签包含了所框选目标可能的种类以及相应的概率。YOLOv5的损失函数包括了坐标损失、置信度损失和类别损失3个部分。

深度学习起源于神经网络,它通过模拟人脑对信息抽象的过程提取信息,来完成高级任务。考虑到YOLOv5的结构和其优越的性能,我们从原理上进行详细的分析,并对该网络的头部网络输出和损失函数部分进行改进。使其替代传统模型中的仿人眼视觉系统模型/观察者对大量数据进行观察并判断的过程,完成模拟人眼和大脑自动对特征提取并输出场景中目标的可识别、可确认概率的功能。由于其输出为可识别和确认概率(PRI),将该改进的网络称为PRI-YOLOv5。图2为PRI-YOLOv5的结构及输出定义示意图。

图2 PRI-YOLOv5的结构及输出定义示意图

预测网络

上述的PRI-YOLOv5网络已实现了性能感知模块的基本功能,但由于目标检测网络只能对数据集中存在的/已标注的目标类别进行判识。而作为判断系统性能的一个环节,该模块应该根据成像系统拍摄图像的质量,对图像中所有的目标均可进行判识。为破除PRI-YOLOv5对可判识目标类别的限制,我们选取文献中的网络作为预测网络。此网络由Su等提出并命名为HyperIQA,被用于盲图像质量评价领域。它包含了3个部分:提取语义特征的骨干网络,学习质量感知规则的超网络和预测最终数值的目标网络。该预测网络可以随着图像内容的变化自适应地调节权重参数,使预测值不断向真值靠近。可用于学习图像内容和数字(概率)之间的映射关系。

如图3所示,只需将PRI-YOLOv5的数据集和其训练出的概率值分别作为预测网络的输入和真值标签。网络即可学习其映射关系。在训练完成后,该网络理论上可以对不同条件下拍摄的目标(或许是未知类别)进行识别和确认概率的判断。主观上来说,具有相似语义特征或内容的图像中的目标应具有相近的可识别/确认概率。另外,由于每张图片对应两个概率标签,所以该网络需要训练两次。

图3 预测网络示意图

实验过程与结果

鉴于红外偏振数据的难以获取,本章首先基于海面场景的红外偏振辐射模型,建立了仿真数据集。随后,我们分别介绍了性能感知模块两个网络的实施细节及结果。最后,对整个模型进行了测试。

海面舰船数据集

图4描述了海面舰船场景仿真的过程。首先,下载舰船的3D模型文件(通常以.max结尾),并对船模型做一些必要的简化,保留其主要特征,来避免模型的过度复杂并减少对计算资源的消耗。导出舰船模型文件并生成高度场。同时,基于波浪谱合成高分辨率的海面。考虑到舰船吃水的实际情况,适当地降低舰船的高度场使其与海面高度场相融合。参考文献对合成高度场进行光线逆追迹,同时保存反射点、法线和反射方向等重要信息。最后,结合这些有效信息、折射率及舰船和海面的温度等计算出偏振辐射度,从而获得场景仿真结果。

图4 场景仿真示意图

根据上述原理,选取6个不同型号的船只作为场景中的观测目标,它们属于3个不同的种类:护卫舰、驱逐舰、巡逻舰。表1展示了船只模型及其尺寸,具体型号以ship1~ship6代为表示。由于场景仿真的原理复杂,计算量大耗时较长。虽然针对船模型以及尺寸较小的海面进行仿真,可成倍缩小计算量。但是基于模型仿真并不完全符合实际情况,如仿真距离和焦距不同对路径中大气传输和红外辐射的影响等。故按照表2中组1参数对船模型进行仿真,并配套以较小的海面尺寸、较近的拍摄距离,用于网络预训练。另外,按照船只的实际尺寸对模型进行放大。护卫舰和驱逐舰模型长度在1.94~4 m之间,实际长度约为模型的50倍,在97~196 m之间,长宽比约为8。巡逻舰由于其任务的特殊性,通常具有更小的尺寸,模型长度约为2 m,实际长度约为模型的35倍,约为62.5 m,长宽比约为4。按照表2组2参数对其进行仿真,用于网络的正式训练。假设仿真是在有太阳辐射的夏季进行的,表2列举了其他的变量和常量。相机的硬件参数根据法国CEDIP公司的一款Jade中波红外偏振相机的说明书进行设置。

表1 船模型及类别

表2 仿真中变量和常量参数设置

仿真图像共计506组,图5给出了一组仿真结果示例,(a)~(e)是5个常见的Stokes参数,即偏振角(AoP)、线偏振度(DoLP)、强度(I)、水平和垂直方向的辐射强度差(Q)和对角方向辐射强度差(U)。经过观察,图(b)~(d)保存了更多的图像细节及偏振信息,将其依次拼接为三通道图像,记为1张。共计图像506张,组1图像288张,组2图像218张。

图5 仿真结果示例

性能感知模块实施细节及结果

PRI-YOLOv5的训练在NVIDIA GeForce GTX 1060 GPU上基于Python 3.6和Pytorch 1.7.0环境实现。训练及测试结果如图6至图8所示。

图6 PRI-YOLOv5训练结果

图7 预测网络测试结果

图8 两组数据预测差值与其相似性的关系

系统性能模型结果及分析

接下来将基于已构建的性能感知模块,进一步测试整个性能模型的有效性。按照图1所示的模型架构,选取3款红外偏振成像系统(代号A款、B款、C款)进行整体的性能评估,系统的主要参数见表4。对于原始仿真图像,需要首先经历系统的退化,然后输入训练好的性能感知模块,来获取最终的目标获取性能。

表4 待评估红外偏振成像系统主要参数

图9展示了上述3款系统的退化效果图,左侧为偏振图像,右侧为按照次序叠加的三通道图像。观察可知,系统A的分辨率最低,成像较为模糊,而系统B的分辨率最高。图10展示了测试数据经过退化后,输入到性能感知模块得到的预测结果经过二次拟合得到的曲线。结果显示,系统的识别/确认概率随距离变远而下降,B系统拍摄的图片质量较高,其性能表现最佳。其次是为C系统,两款系统均在3.7 km仍保持50%的识别概率。而A系统的50%识别概率则需要通过预测来获得,超出了数据涵盖的距离范围。在4.2~4.3 km之间,A系统的识别概率和B、C两款系统的确认概率出现交叉,这可能是由于该系统的探测器分辨率过低。总体来说,该评估结果与主观认知基本吻合,和实验室前期实拍实验得出的结论基本相符。

图9 几款待评估偏振系统的退化效果示意图

图10 不同距离处的目标获取概率(三款系统)

结论

本文首先介绍了红外偏振成像系统相关性能模型的研究背景和研究现状,并分析了已有性能模型的优缺点。并根据目前的需求,建立了一个基于图像的红外偏振成像系统性能模型。为满足系统性能模型的自动化需求,首次将深度学习方法引入模型。作为搭建系统性能模型与深度学习方法之间桥梁的初次尝试,该项研究有望引领系统性能模型领域朝此方向发展。对于模型中较为关键的性能感知模块的原理和相关实验的实施细节及原理进行了详细的描述。结果表明,整个系统性能模型可对已知硬件参数的红外偏振成像系统进行性能评估,并且所得结果与人的主观认知具有较好的一致性。此外,本文基于物理模型构建了面向海面场景的红外偏振数据集,可应用于各项相关研究。

文中搭建的模型基于自建的仿真海面舰船数据集展开实验验证。后续可进一步讨论其他典型场景,如地面坦克等。另外,仿真技术对仿真图像的质量有直接的影响。应进一步提升仿真水平。同时,在后续的研究中,有望将该模型应用于更多不同类型相机的性能测试。

这项研究获得国家自然科学基金资助项目(62171024)的资助和支持。

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 51浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 212浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 140浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 56浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 152浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 195浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 115浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 120浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 111浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 84浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 102浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 48浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦