功率MOSFET基本结构:平面结构

原创 松哥电源 2023-06-03 10:28

功率MOSFET即金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor)有三个管脚,分别为栅极(Gate),漏极(Drain)和源极(Source)。功率MOSFET为电压型控制器件,驱动电路简单,驱动的功率小,而且开关速度快,具有高的工作频率。常用的MOSFET的结构有:横向导电双扩散型场效应晶体管LDMOSLateral Double-Diffused MOSFET)、垂直导电双扩散型场效应晶体管(Planar MOSFET),沟槽型场效应晶体管(Trench MOSFET),超结结构场效应晶体管(Super Junction MOSFET),浮岛结构场效应晶体管等。

1、横向导电双扩散型场效应晶体管的结构

N沟道的横向导电双扩散型场效应晶体管的结构如图1所示,栅极,漏极和源极都在硅片的上表面,下部为衬底。栅极和源极加上正向电压后,在栅极的氧化层下面的P区吸附电子,栅极和源极正向电压大于一定的值时,P区紧靠栅极的氧化层的薄层中,局部的电子的浓度大于P区的空穴的浓度,从而形成“反型层”,也就是薄层由P型变成N型,电子就可以从源极通过反型层流向漏极,电流从漏极向源极流动,这个反型层就形成电流流过的通道也称为“沟道”。

电流从漏极流向源极时,电流在硅片内部横向流动,而且主要从硅片的上表层流过,因此没有充分应用芯片的尺寸;而且,这种结构的耐压,由栅极下面P层宽度和掺杂决定,这个区域同时也是导电的沟道,为了减小沟道的导通电阻,栅极下面P层宽度不可能过大,掺杂浓度也不可能太低,因此,其耐压通常也比较低,无法承受高的反向电压。另外,电流从芯片表面的薄层流过,即使是沟道的截面积增加,但芯片整体的截面积也不大,这样,芯片电流流过的截面积非常小,因此,导通电阻比较大,无法流过大的电流。这种结构的电压和电流的额定值都受到限制,无法用于功率电路。但这种结构具有低的电容,使用短沟道,因此开关速度快,主要适合低压应用,如微处理器、存储芯片,运放、数字电路及射频电路等。

图1 横向导电结构的MOSFET


在芯片制程工艺中,经常使用芯片或半导体的工艺尺寸,如3um、2um、1.5um、1um、0.8um、0.5um、0.35um、0.25um、0.18um、0.13um、90nm、65nm、45nm、32nm、22nm、14nm、10nm,通常所说这个工艺尺寸,指的就是栅极Gate的宽度,也是沟槽宽度或者线宽,不是每个晶胞单元尺寸,如图2所示。沟槽宽度对应着漏极到源极的距离,沟槽宽度减小,载流子流动跨越沟道的导通时间减小,允许工作开关频率可以提高;沟槽宽度小,沟道开通所加栅极电压可以降低,导通更容易,开关损耗降低,同时,沟道导通电阻降低,降低导通损耗。但是,漏极和源极的间距不断减小,栅极下面接触面积越来越小,栅极对沟道的控制力就不断减弱,带来问题就是栅极电压为0时,漏极和源极的漏电流增加,导致器件性能恶化,增加了静态功耗。使用上下双栅极结构、鳍型结构(FinFET),就可以解决了短沟道效应这个问题,这样也促进了新一代芯片的工艺尺寸不断的降低,工艺水平不断提升。

图2 芯片工艺制程的线宽

单芯片的电源IC中,内部集成的功率MOSFET只能使用横向导电结构,因为所有的引脚都在芯片的表面。为了解决漏极和源极的耐压比较低的问题,必须对上面的结构进行改进。因为外加电压的正端加到MOSFET的漏极,如果在高掺杂的漏极N+和P区的沟道之间,增加一个低掺杂的N-区域,如图3所示,因为N-和N+为相同的半导体类型,不影响电流导通的回路,电流可以直接从N+流向N-;尽管N-为低掺杂,但是,其电阻率低于沟道,这样,通过调整其掺杂浓度和宽度,就得到较高的反向电压,同时控制其导通电阻在设计的范围内,这种结构就可以流过大电流,应用于功率电路。

图3 横向导电的功率MOSFET

在漏极N+和P-体区之间增加的N-层,称为“漂移层(Drift Layer)”,也称为“外延层(Epi Layer)”。当漏极和源极之间加上电压时,P区掺杂浓度高,耗尽层主要在N-层的漂移层中扩展,漏极和源极的阻断电压,几乎完全依赖漂移层的宽度和掺杂浓度。

使用N-漂移层作为衬底,在N-漂移层中,通过2次的扩散就可以形成图3的结构:第1次扩散制作出P阱,也称为P-体区(P-Body);然后,在P-体区的内部,第2次扩散制作出N+源极。因此,这种结构称为横向导电双扩散型功率MOSFET,LDMOS(Lateral Double-Diffused MOSFET)。

尽管P区多数载流子(多子)为空穴,在P区内部局部区域进行扩散掺杂,只要掺杂的5价元素的浓度,大于P区原来3价元素的掺杂浓度,那么,在这个局部区域的电子的浓度就大于空穴,从而转变为N型半导体。因此,判断是N型半导体还是P型半导体,掺杂几价的元素不是关键,主要的依据是电子浓度和空穴浓度。如果一个区域中,电子浓度高于空穴浓度,那么,多子是电子,少子是空穴,就是N型半导体,反之就是P型半导体。

2、垂直导电双扩散型场效应晶体管的结构

芯片的厚度非常薄,而芯片的面积,相对的尺寸比较大,图3中,电流依然是在芯片的上表层,横向水平从漏极流向源极,电流流过的截面积小,导通电阻大,芯片的尺寸没有充分得到利用;同时,为了提高漏极和源极的耐压,N-层漂移层的宽度必须增加,这样进一步增加了导通电阻,限制了芯片流过电流的能力,因此,如果设计高压大电流的LDMOS,芯片的尺寸将非常大,成本非常高。所以,LDMOS只用在低压、较小电流的单芯片电源IC里面。

如果把图3的结构中MOSFET的漏极N+区,移到衬底的底部,漏极通过衬底的下表面引出, MOSFET导通后,电流就可以从衬底底部的漏极垂直流向顶部的源极,电流在芯片内部垂直流动,而且电流流过芯片整个水平的截面积,由于芯片水平截面积较大,导通电阻小,这样,就可以提高MOSFET通过电流的能力,如图4所示。

图4 垂直导电的功率MOSFET

这种结构中,N-外延层的掺杂浓度越低、厚度越大,漏极和源极的耐压值越高,导通电阻越大;反之,掺杂浓度越高、厚度越小,耐压值越低,导通电阻越小。因此,通过调整N-外延层的掺杂浓度和厚度,就可以保证耐压值达到要求,同时,导通电阻也满足设计的要求。

这种结构的N沟道功率MOSFET,使用衬底为高掺杂的N+衬底,高掺杂衬底部分的电阻小;然后在N+衬底上制作出低掺杂、高纯度、一致性非常好的N-的外延层。然后,在N-的外延层中,同样的通过2次扩散掺杂,制作出两个连续的P-体区以及在二个P-体区内部的N+源极区。在芯片表面制作出薄的高质量的栅极氧化物,在氧化物上面沉积多晶硅栅极材料,沟道在栅极氧化物下面的P-体区中形成,源极和漏极区沉积金属材料,就完成了这种结构的生产。这种结构的电流从下到上垂直流过,通过2次扩散掺杂加工,因此,称为垂直导电双扩散功率MOSFET。在加工过程中,这种结构没有挖沟槽,采用的是平面的工艺,也称平面结构的功率MOSFET。

其工作原理是:栅极和源极间加正向电压,P区中的少数载流子,即少子,也就是电子,被电场吸引到栅极下面的P区的上表面,随着栅极和源极正向偏置电压的增加,更多的电子被吸引到这个表面的薄层区域,这样本地的电子密度要大于空穴,从而出现“反转”,形成反型层,半导体材料从P型变成N型,形成N型“沟道”,电流可以直接通过漏极的N+区、N-外延层、栅极下面N型沟道,流到源极的N+型区。

实际上,在上面的结构图中,示意的只是功率MOSFET内部一个单元的结构,也称“晶胞”。功率MOSFET的内部,由许多这样的单元,也称“晶胞”,并联而成。芯片的面积越大,所能加工出的单元越多,器件的导通电阻越小,能够通过的电流就越大;同样,在单位的面积的芯片上,能够加工的晶胞越多,也就是晶胞单位密度越大,器件的导通电阻也就越小。器件的导通电阻越小,通过电流的能力就越大,电流额定值也就越大。

在这种结构中,栅极下面的区域没有流过功率主回路的大电流,因此栅极下面占用的部分芯片的面积不能充分得到应用,也影响到能够加工的晶胞单位密度的最大值;栅极的面积大,寄生电容Crss就越大,因此开关性能较差,开关损耗大;同时,结构内在的JFET效应,导致导通电阻也偏大。但是,这种结构的功率MOSFET,工艺非常简单,单元的一致性较好,因此它的跨导的特性比较好,雪崩能量比较高,同时寄生电容也较大,主要应用于高压的功率MOSFET和开关频率不太高的中压功率MOSFET。

图5 平面结构的功率MOSFET

图6 平面结构的功率MOSFET立体图

图7 平面结构的功率MOSFET截面图

在图4中,栅极氧化层的的下面是N-外延区,在其二侧是二个P-体区,这种结构内在的就形成了一个JFET,如图8所示,产生JFET效应。N-区和二侧P区,形成PN结,产生耗尽层和空间电荷区。即使是在功率MOSFET导通的时候,这个耗尽层依然存在,那么,电流主要从二个P区之间非耗尽层的区域流过,相当于实际能通过电流的截面积减小,也就是相当于导通电阻变大,因为JFET效应增大的电阻,称为JFET电阻。耗尽层越宽,电流的通道面积越小,JFET效应越明显,JFET电阻越大。耗尽层的宽度,和JFET的栅极(P区)到JFET的源极(N-外延层最上部区域)的电压绝对值有关,这个电压绝对值为0,耗尽层非常窄,JFET电阻非常小;这个电压绝对值升高,耗尽层变宽,JFET电阻变大。当然,JFET电阻也受功率MOSFET的漏极和源极导通电压的影响。

图8 JFET的结构

松哥电源 松哥电源,致力于提供一个电力电子及电源系统设计与交流的空间,聚集背景相类、价值观相同的电子工程师的智慧,探讨理论,关注细节,评说经验,分享电力电子及电源系统设计的快乐。
评论
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 158浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 173浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 16浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 26浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 21浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 23浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 161浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 113浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 29浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 121浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 165浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦