全面讲解系统诊断管理模块设计

汽车ECU开发 2023-06-01 08:43

前言

Dem是AUTOSAR中配置项最多,实现功能最为复杂的模块之一,主要负责记录故障诊断以及其关联数据,是实现诊断功能至关重要的模块,本文将以最简单的方式将Dem的功能聊具体,聊透彻。为了方便大家学习,以下是本文的大纲。

1.诊断故障基础

当人患了疾病,便需要医治,医生根据各种检验结果找出病因,并得出诊治策略。当汽车出现故障时,DTC故障码就等同于“检验结果”,汽车工程师通过该标识码便可以查表的方式获得该故障信息,如故障触发条件、故障解除条件、系统功能表现等,得出解决该故障的策略。
DTC(Diagnostic Trouble Code)顾名思义诊断故障码,一种用来记录当ECU发生或者检测到某种故障时呈现给大家的标识码

1.1 DTC的组成

DTC故障码是一个4个字节的标识符,由以下两部分组成:DTC Catogory Failure Type,其中DTC Catogory 又可以根据PowertrainBodyChasisN etwork四大子系统来进一步定义其范围,简称PBCU四大子系统,如下表所示:

1.2 DTC的意义

故障码有以下两点意义:

1)产线下线检测:一辆车的零部件的开发,系统集成,整车组装,其中涉及的流程之长,零部件数量之多,可以说是相当复杂。为了产线生产的车能正常下线,安全上路,就需要确保在车辆下线前,各零部件本身以及零部件相互配合是没有问题的。因此在产线电检流程中,会读取整车故障码,通过故障码说明车辆是否正常。

2)车辆维修:当车辆出故障时,维修工程师是如何快速定位到故障零部件呢?车辆是由上万个零部件组成,如果依赖于维修工程根据经验慢慢排查,效率会极其低下。因此,维修工程师会使用诊断仪读取整车故障码,并将故障码与故障现象对照,快速得出维修策略。

1.3 DTC故障类型

以非排放相关的ECU为例,可以将DTC故障类型分为以下几个部分:

硬件故障:RAM、Flash、CPU时钟等硬件本身失效的问题

软件故障:如配置字故障,标定故障或客户定义的软件功能性故障

外部环境故障:电压过高或者欠压、环境温度过高或过低等

通讯相关故障:如报文丢失、信号无效,Checksum/Rolling 障等

1.4 DTC状态位介绍

每个DTC都有一个字节用来表示该故障的状态,这个字节中每个bit的含义如下:

status Of DTC: bit field name

Bit 

Bit state

Description

testFailed

0

0

DTC  is not failed at the time of the request

testFailedThisOperationCycle

1

0

DTC  failed during the current operation cycle

pendingDTC

2

0

DTC  was not failed on the current or previous

operation  cycle

confirmedDTC

3

0

DTC  is not confirmed at the time of the request

testNotCompletedSinceLastClear

4

0

DTC  test was completed since the last code clear

testFailedSinceLastClear

5

0

DTC  test never failed since last code clear

testNotCompletedThisOperationCycle

6

0

DTC  test completed this operation cycle

warningIndicatorRequested

7

0

Server  is not requesting warningIndicator to beactive

具体解释如下:
Bit0:请求时刻测试结果为失败;
Bit1:在当前点火循环至少失败过1次;

Bit2:在当前或者上一个点火循环测试结果不为失败;

Bit3:请求时刻DTC被确认,一般确认是在一个点火周期内发生错误1次;

Bit4:自上次清除DTC之后测试结果已完成,即测试结果为PASS或者FAIL结果;

Bit5:自上次清除DTC后测试结果都不是FAIL;

Bit6:在当前点火周期内测试结果已完成,即为PASS或FAIL状态;

Bit7:ECU没有得到点亮警示灯请求


1.5冻结帧与扩展数据

从上文可知,DTC中8bit位可以描述DTC状态,但8个bit位能够承载的信息是有限的,仅能说明故障是当前故障还是历史故障。故障发生时的车速,温度,油量,电量等关键信息怎么记录呢?

UDS中规定了冻结帧可以用来记录故障发生时的详细情况,扩展数据可以提供故障码相关的扩展信息,包括老化计数器

类型

组成

内容

冻结帧

由一系列DID组成,用户可以自定义DID内容

描述车速,温度,油量,等信息

扩展信息

由一系列DID组成,DID内容由BSW规定

描述故障码的额外信息,比如老化周期数量。


2.DEM详解

2.1 DEM主要功能

        Dem全称Diagnostic Event Manager,负责诊断故障事件的处理,存储诊断故障事件以及故障事件相关联的数据(故障发生时温度,车速等)。简而言之,Dem发挥了AUTOSAR架构中故障中央处理器作用,用户软件模块只需要将故障上报给DEM,所有故障信息的处理都由DEM执行:

1.故障确认前:用户模块上报故障的Debounce防抖处理,确保对应故障不为误报故障。

2. 故障确认时:故障事件确认时的故障数据存储至NVM,保证故障能长期保存。

3. 故障确认后:故障的老化,替代,实现故障修复后,故障能被清除的功能。例如,仪表上的发动机故障灯,在发动机修好后一段时间后就会熄灭。

2.2 DEM与其他模块关系

1DEMAUTOSAR架构位置

Dem位于AUTOSAR架构系统服务层,系统服务层提供了以下服务

1.操作系统调度与监控服务、

2.通信与网络管理服务

3.存储服务

4.诊断服务(UDS通信服务以及故障服务)

  5.ECU状态管理服务

从下面架构图可以看出,Dcm与Dem作为“诊断双雄”,完整提供了所有的诊断服务。区别在于,Dcm主修“UDS诊断通信服务”,对下与通信协议栈联系,与外部诊断仪交互提供诊断通信服务(10,22等服务);Dem主修故障诊断服务,与上层SWC,BSW模块交互,接收故障上报,与NVM交互使用存储功能。

               

 

‍‍‍

AUTOSAR架构图

‍‍‍

2)Dem与其他模块依赖关系

                                   

         

‍‍‍

 

Dem与其他模块关系链路图

‍‍‍

NVM: Nvm能够提供存储服务给Dem使用,即提供诊断故障存储所需的NVM BLOCK。需要注意的是,NvmDem提供了两类存储服务接口,Nvm_WriteBlock()DEM实时存储诊断故障,NvM_SetRamBlockStatus()Dem下电存储诊断故障,上述存储模式可以在DTC配置属性中体现。

DCM:从上图中可以看出,DCM在接收到诊断仪的19服务(get Dtc),14服务(Clear Dtc)时,需要实时通过Dem获取DTC数据以及对DTC进行清除操作。

ECUMDem模块执行初始化以及ShutDown操作。

SWC(Monitor)监控诊断故障事件Event,通过使用Dem_SetEventStatus()函数,将Event状态上报给Dem。使用Dem_SetOperationCycleState()对操作循环状态进行控制。

2.3 DEM核心Event

在介绍DEM的具体功能前,先引入概念Diagnostic eventDiagnostic event也是DEM模块中最重要的元素。对于AUTOSAR软件架构,DTC只是展示给诊断仪使用者,而Event才是DTC状态实际操控者,同时Event也是诊断NVM数据存储实际控制者。

各位读者肯定会有如下问题:

为什么要引入 “Diagnostic event”呢?

“Diagnostic event”来源?

“Diagnostic event”有哪些特性呢?

“Diagnostic event”怎么控制DTC?

“Diagnostic event”怎么控制诊断数据存储?

接下来将会给大家一一解答上述问题。

1)Event与DTC的联系与区别

区别:

1描述层级:DTC是系统层面对于故障的描述,而Event是软件层面对故障监控的最小单元。

例子:某个电机故障会由电压过高造成,但软件是无法直接识别该故障,软件只能监控是否产生了电压过高的时间Event,从而计算出是否产生DTC.

2.链接关系多个event可以mapping 同一个DTC;而同一个event不能mapping 多个DTC;

3.可见度DTC可以直接可见,但Event需通过进一步手段才能看到,有时仅对ECU供应商可见;

联系:

1.DTC代表某类event集中表现,而event则是某个DTC的具体实例;

2.event的优先级决定了DTC的优先级;

3.event之间的依赖关系决定了DTC的依赖关系;

2)“Diagnostic event的上报方式

上文提到了SWC监控故障Event的状态,并可以通过Dem_SetEventStatus(EventId,EventStatus)向DEM上报Event状态。那么对于SWC,应该怎样上报Event状态呢?周期调用Dem_SetEventStatus上报即为周期循环上报;当Event状态变化时,调用Dem_SetEventStatus上报为触发上报。两种上报方式各有优缺点,如下图所示,切不可一刀切。

一般来说,对于小型控制器,需要上报Event数量不多,可以选择周期循环上报。

对于域控制器,需要上报的Event数量庞大,为了保证负载率稳定,应该选择触发上报。

3)“Diagnostic event”有哪些特性呢?

1.Event Kind

Event Kind根据故障事件上报方式可分为:BSW EventSWC Event

Event Kind

来源

上报方式

函数名

BSW Event

BSW模块

标准C接口

Dem_ReportErrorStatus

SWC Event

SWC模块

RTE接口

SetEventStatusRTE

2.Event priority

对于诊断,能够存储的故障事件以及对应冻结帧等相关数据的数量是恒定的,需要软件开发工程师提前配置。当内部存储的故障事件已经满了,Event优先级可以解决新的故障事件如何存储的问题。

一般来说,诊断优先级的设定由诊断系统工程师从整车功能出发,根据诊断故障的重要性,安全性,严重性综合评估。比如汽车的动力故障远比空调故障严重,所以动力相关故障优先级一般会大于空调相关故障。

诊断事件优先级有下面几个重要特点

1)诊断事件优先级数值越小,优先级越高,数值为1优先级最大。

2)Event优先级仅在诊断事件已经存满情况下发挥作用,其余情况根据FIFO原则存储。

3.Event occurrence

Event occurrence顾名思义就是故障事件上报计数器,故障上报次数越多,Event occurrence值越大,标志着该故障越“老”。“新”‘老’故障标签在后续新的故障事件如何存储的仲裁机制上也会发挥重要作用,这部分内容在后面的内容会详细说明。

Event occurrence存在以下特点,如下所示:

1.每一个event memory entry都有对应的Event occurrence。

2.Event occurrence最大值为255。

3.Event occurrence的计数方式有如下两种配置选择:

配置属性

计数方式

DEM_PROCESS_OCCCTR_TF

Bit0(TestFail)由0跳变至1,Event  occurrence +1

DEM_PROCESS_OCCCTR_CDTC

Bit0(TestFail)由0跳变至1和Bit3由0跳变至1,Event  occurrence +1


2.4 Event Memory存储内容

上文对Event,冻结帧,扩展数据等作了详细描述,那么,这些数据在DEM中是怎么存储的呢?DEM提供了Event Memory概念,将Event,冻结帧,扩展数据全部归纳起来做了统一管理。废话不多说,开始探Event Memory吧。

Event Memory分类:

类型

含义

DemPrimaryMemory

存储EventId,故障状态,冻结帧,扩展数据

DemMirrorMemory


Permanent Event Memory

用于存储OBD相关的DTC

Event Memory的组成架构如下图所示:

Event Memory组成架构图


S1:Dem模块必须支持Primary MemoryMirrorPermanent memory可根据用户需要具体选择,一般用不上。

S2: Primary Memory是一个大小为DemMaxNumberEventEntryPrimary用于存储故障数据的非易失性存储空间。也就是Primary MemoryDemMaxNumberEventEntryPrimaryEvent Memory Entry组成。

本质上,DemMaxNumberEventEntryPrimary设置为多少,NVM就会提供多少个NVM Block用于存储Primary Memory,就只能存储多少个Event信息。

S3:每个Event Memory Entry存储的内容有:EventIdOccurance Counter,冻结帧,扩展数据,老化周期等。

2.5 Event Memory management

SWC或者BSW上报Event后,会经过哪些处理最终变成Flash中的Event Memory呢?

从下图中可以看出,Event上报后需要经过下列处理:
Event使能条件检测

Event控制DTC Bit位更新
Event Memory Retention

Event Memory management流程图


1)Event使能条件检测

Event使能条件就相当于Dem中的一个闸门,只有在条件合适的情况下Event才能真正进入Dem的处理流程中。

Event使能条件流程图

从图中可以看出,Event上报至最终能到第二阶段Event控制DTC bit位跳变,需要经历很多流程,接下来对上述流程进行详解。

S1:首先,需要判断当前是否开启了操作循环,操作循环一般指的是点火循环,一个操作循环可以认为是DTC检测的一个周期。如果操作循环开启了,则开始下列的Enable Condition判断,否则直接退出整个Event Memory management流程。

S2::Enable Condition判断指的是Event上报增加的一个附加条件判断,Dem通过对应的接口给SWC使用,SWC实现附件条件处理。一般可以用来处理一些电压,车辆模式等限制条件。如果Enable Condition条件满足,则进行85服务判断;如果Enable Condition条件不满足,则直接退出Event Memory management流程。

S3: 若现在使用了85服务抑制DTC使能,则直接退出整个Event Memory management流程。若没有执行85服务,开始Event Debounce流程。

S4:经过Debounce后,如果最终Event结果为Pass或者Fail,则开始下一阶段Event控制DTC跳变;否则直接跳出退出整个Event Memory management流程。

Event Debounce
“Debounce”顾名思义,指对于Event的防抖处理,防止Event误报导致DTC误报。
SWC通过Dem_SetEventStatus(EventId,EventStatus)上报Passed/Failed/PrePassed/Prefailed四种状态。
1)当SWC上报Passed和Failed状态时,Dem不需要进行Debounce处理。
2)当SWC上报Prefailed和Prepassed状态时,Dem需要进行Debounce处理。

本质上,Dem提供的Debounce为通过特定机制,处理PrePassed/Prefailed至Passed/Failed状态变化。

Dem提供了两种Debounce机制,即“Base Time”和“Base Counter”

1.基于计数器的Debounce策略

基于Counter的Debounce策略的几个重要参数如下表格:

参数

含义

FDC(Fault Detection Counter)

错误计数器,值范围为-128-127

DemDebounceCounterFailedThreshold

使Event诊断事件状态最终为FailedDebounce  Counter阈值

DemDebounceCounterPassedThreshold

使Event诊断事件状态最终为PassedDebounce  Counter阈值

DemDebounceCounterIncrementStepSize

SWC上报Prefailed,错误计数器增加量

DemDebounceCounterDecrementStepSize

SWC上报Prepassed,错误计数器增加量

基于Couneter的Debounce机制

如上图所示,在基于Counter的Deboucne机制中,Dem会提供一个计数器(FDC)用于记录判断的结果,当SWC上报给Dem的Event状态为Prefialed,计数器会按照步长增加,当达到设定的限值时,故障状态变成Failed。当上报状态为PrePassed时,计数器按照步长减少,当达到设定的限值时,故障状态变成Passed。


2.基于时间的Debounce策略

基于时间的Debounce策略的几个重要参数如下表格:

参数

含义

DebounceTimeBasedTaskTime

基本的检测周期

DemDebounceTimeFailedThreshold

定义故障状态从PreFailed跳转至Failed需要多少个DebounceTimeBasedTaskTime周期

DemDebounceTimePassedThreshold

定义故障状态从PrePassed跳转至Passed需要多少个DebounceTimeBasedTaskTime周期

基于时间的Debounce机制

在这种策略下,当SWC开始上报Event状态后,Dem模块会提供一个计时器用于记录判断的结果,计时器的增长方向由Event状态决定。当计时器累积到一定阈值后,故障状态变为Passed或者Failed。
3)Event 控制DTC状态更新

当Event经过一系列处理,最终能够对DTC状态进行更新,DTC 8个bit更新逻辑如下:

DTC Bit0 更新逻辑

Bit位更新

条件

0 -> 1

Debounce后最终上报状态为Failed

1 -> 0

Debounce后最终上报状态为Passed

OR

使用14服务清除DTC

OR

复位事件状态

DTC Bit0 更新逻辑图

DTC Bit1更新逻辑

Bit位更新

条件

0 -> 1

Debounce后最终上报状态为Failed

1 -> 0

操作循环更新

OR

使用14服务清除DTC

 

DTC Bit1 更新逻辑图

DTC Bit2更新逻辑

Bit位更新

条件

0 -> 1

Debounce后最终上报状态为Failed

1 -> 0

(操作循环更新 AND TestFailedThisOperationCycle == 0

OR

使用14服务清除DTC

OR

TestNotCompeleteThisOperationCycle == 0

 


DTC Bit2 更新逻辑图

DTC Bit3更新状态

Bit位更新

条件

0 -> 1

Debounce后最终上报状态为Failed

AND

     Fialure Counter > = 故障确认阈值

1 -> 0

达到老化条件

OR

使用14服务清除DTC

OR

      故障溢出被替换

DTC Bit3 更新逻辑图

DTC Bit4更新逻辑

Bit位更新

条件

0 -> 1

Debounce后最终上报状态为Failed

1 -> 0

使用14服务清除DTC

DTC Bit4 更新逻辑图

DTC Bit5更新逻辑

Bit位更新

条件

0 -> 1

经Debounce后最终上报状态为Failed

1 -> 0

使用14服务清除DTC

  

DTC Bit5 更新逻辑图

   DTC Bit6更新逻辑

Bit位更新

条件

0 -> 1

Debounce后最终上报状态为Failed

1 -> 0

使用14服务清除DTC

OR

操作循环更新

DTC Bit6更新逻辑图

DTC Bit7更新逻辑

Bit位更新

条件

0 -> 1

Debounce后最终上报状态为Failed

AND

点灯条件满足

1 -> 0

使用14服务清除DTC

OR

点灯条件不满足

DTC Bit7更新逻辑

4)Retention条件检测

DTC状态完成更新后,Dem将开始进行Retention条件检测。Dem给用户提供多种策略用以判断是否需要分配Event Memory Entry。分配策略由配置DemEventMemoryEntryStorageTrigger决定,具体如下面表格所示:

DemEventMemoryEntryStorageTrigger

分配条件

DEM_TRIGGER_ON_TEST_FAILED

DTC bit0 0跳变成1

DEM_TRIGGER_ON_CONFIRMED

DTC bit3 0跳变成1

DEM_TRIGGER_ON_PENDING

DTC bit2 0跳变成1

DEM_TRIGGER_ON_FDC_THRESHOLD

DTC bit0 0跳变成1

OR

DTC bit10跳变成1

OR

DTC bit20跳变成1

OR

DTC bit30跳变成1

 


5)Event Memory Retention处理

Event上报经过了使能条件检测,Event控制DTC Bit位状态更新,Retention条件检测重重难关,最终被允许进入Event MemoryDem会怎样将EventDTCs),DTC状态,快照,扩展数据存入Event Memory中呢?

基本思路如下:

Event Memory Retention处理机制
S1:在Event Mmeory所有Event Mmeory Entry中搜索,检查该Event及相关数据是否已经存入Event Memory中,如果已经存在,则进入Event Memory Entry Storage。如果不存在,则在Event Memory中寻找空间用于存储Event内容,如果Event Memory中空间已满,则需要使用Replacement机制。

S2:当进入Event memory Storage,Occurance Counter需要加1,判断是否需要更新冻结帧,扩展数据。
Event Displacement处理
Event Memory存储了数量为DemMaxNumberEventEntryPrimary的Event Memory Entry,当Event Memory Entry已满,需要进行Replacement,即根据一定的策略决定新增的Event如何存储。Dem模块提供了一套完善的机制用于Replacement,该机制有三个核心原则:

1.Event Priority(数字越小存储优先级越高)

2.Event Active或者Event Passive状态(Active优先级高于Passive优先级)

3.Event Occurance Counter(最近发生的存储优先级高于之前发生的)

被替换的Event对应DTC中Bit2,Bit3 ,Bit5会被设置为0.

下图展示了整套Event Displacement机制,体现了三个核心原则在替换机制中的作用。

Event Displacement机制

总结

DEM是以DTC为核心的AUTOSAR基础软件模块,实现了对DTC的监控上报,存储等功能,如果需要对AUTOSAR诊断进行进一步学习,还需要对DCM,Doip,Cantp等模块进行系统性学习。


分享不易,恳请点个【👍】和【在看】

汽车ECU开发 专注于汽车电子ECU软件开发,技术分享。
评论
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 37浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 150浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 115浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 92浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 48浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 37浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 126浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 37浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 128浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 50浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 33浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦