比特错误模式能为DRAM故障预测带来什么?

SSDFans 2023-06-01 07:22

"不可纠正的内存错误是数据中心的主要故障原因之一"

本文利用今日头条服务器集群中3个主要的双内联存储模块( dual inline memory module,DIMM )制造商的大规模现场数据,对可纠正错误( corrected error,CE )和不可错误( uncorrectable error,UE )进行了实证研究。与以往的研究不同,本文的研究首次理解了CE和DIMM部件号的错误比特信息之间的关系。与传统的芯片失效纠错码( Chipkill Error Correction Code,ECC )不同,在当今的Intel服务器平台中,ECC被削弱,无法容忍单个芯片的某些错误位模式。利用可获取的粗粒度ECC知识,本文从错误比特信息中推导出一个新的指标:Risky CE。从数据中,本文表明新指标在测试来自不同制造商的DIMM的未来UE发生时具有一致的高灵敏度和特异性。

背景

一、数据收集

研究中使用的DRAM错误数据来自字节跳动的一个服务器集群。在服务器农场,大约有10万台服务器采用SkyLake或Cascade Lake架构,即英特尔最新的服务器架构。包括互联网服务、在线数据馈送、离线数据分析等在内的各种工作负载混合在服务器上运行。服务器上的DIMM来自三星、海力士和美光。

DRAM错误数据主要通过Linux检错纠错驱动程序采集。同时获取每个CE的微观地址信息,即channel、rank、bank、row和column。通过引用驱动程序日志中记录的读取重试寄存器来提取每个CE的错误位信息。数据收集时间为2021年1月至8月。期间未启用硬件保护技术(例如,部分缓存行空闲、行空闲、行空闲或片空闲)和软件保护技术(例如,操作系统中的页面裁剪)。值得注意的是,在这项研究中,特别感兴趣的是过去CE历史中未来UE发生的线索。对于具有一个UE的DIMM,本文将其误差日志限制为其第一个UE出现的时间(即只保留UE之前的CE历史)。在此期间,超过1万个DIMM上观测到超过800万个CE。在574个DIMM上观测到UE。

特别要注意的是,本文使用的数据集和先前工作中有两点是比较特殊的:

1、对于每个CE,能够知道哪些比特是错误的。这使得可以基于CE的错误比特模式进行进一步的分析,以更好地理解与UE的相关性。

2、对于每个DIMM,记录其部分编号。这样可以看到,某种分析是否可以推广到来自制造商的不同零件编号,或者与特定零件编号相关。

表中给出了DRAM故障数据集关于不同DIMM厂商和零件编号的特征。

新的风险指标

一、Risky CE

与Chipkill ECC不同,当代英特尔服务器平台上的ECC并不能保证完全覆盖单个芯片在访存过程中数据位上的所有可能错误。虽然精确的ECC算法是高度机密的,并且从未公开过,但英特尔确实概述了一些粗粒度的错误位模式,这些错误位模式被保证是完全可纠正的。如果一个错误的实际错误位模式不能被其中任何一个完全可以纠正的模式所覆盖,则该错误有小概率是不可纠正的。

如图所示,假设将两种完全可纠正模式具象化为图(a)和(b)。图(d)和图(e)所示情况即为完全可纠正的比特错误模式,因为其错误的比特被完全可纠正模式完全覆盖,但是图(c)既不能被(a)覆盖,也不能被(b)覆盖,因此可以被认为存在概率不可纠正,当出现这种情况的CE时,就被认为是Risky CE。

二、新指标

将每个制造商的DIMM分为两个互斥的种群,仅有CE的DIMM和同时有UE的DIMM。图中的 ( a )、( b )和( c )分别比较了来自制造商A、B和C的两个种群的风险CE数的累积分布函数( CDF )。在所有3个DIMM制造商中一致的观察是CDF在风险CE数1处显著偏离。对于仅含CE的DIMMs,80 %以上的风险CE数为0。相比之下,约80 %的DIMMs同时具有UEs,则风险CE数至少为1。这表明风险CE的发生是两个人群之间的一个突出的判别器。值得注意的是,风险CE数大于1并不能提供更好的区分度,因为风险CE数越大,两个CDF的散度就越小。

考虑到CE数量作为未来UEs 的常用指标,为了进行比较,分别在图3 ( d )、( e )和( f )中绘制了来自制造商A、B和C的两个种群的最大CE率(即CE历史中过去24小时内的最大CE数)的CDF。两个种群的CDF更接近。无论选择哪种CE速率,它都不能从3个DIMM制造商中的任何一个中提供两个群体之间令人满意的区分。这表明CE率的区分度要低得多。

三、新指标的应用

图中显示了直接使用新的风险CE指标对3个制造商的DIMM进行UE预测的准确率和召回率。为了比较,以最常用的预测因子,CE率预测因子的不同参数作为基线。虽然传统的CE率预测器可以达到与低阈值(即过去24小时内有10次CEs)相当的召回率,但其精度明显低于新的风险CE预测器。值得注意的是,即使是来自C厂商的DIMMs,虽然风险CE预测器的精度很低( 5.3 % ),但仍远高于基线( < 2 % )。

四、使UE预测更加精确

1、用于UE预测的学习决策列表

[Part_number:] Risky_CE [∧()]→UE.()

简单的讲,决策列表就是从现象推导到结果。其中,端口号和故障位置是可选的。用于将故障推广到同一厂商的同一端口或者同一故障位置。

文章提出通过迭代识别有信心的预测规则,以精确驱动的方式学习决策列表。在每次迭代中,执行两个步骤。第一步是根据当前的训练数据枚举不同的规则并选择最有信心的(即,精确)规则。第二步是从训练数据中移除新识别规则覆盖的正负训练样本。文章不限制迭代次数。相反,在最佳候选规则的置信度下降到预定义的阈值θ confidence之前,继续决策列表的扩展。通过选择最自信的规则,关注每次迭代中的精度。通过多次迭代扩展列表,逐步提高召回率。

Precision and Recall:

图中显示了新的决策列表方法在在线UE预测中的准确率和召回率。在图中,还将使用新的风险CE指标和性能最好的CE率预测器的UE预测结果进行比较。可见,结合风险CE指标、微观故障指标和DIMM零件编号信息,3个主要厂家的DIMM UE预测精度均得到提高。这种改进对于来自制造商B和C的DIMM来说尤为显著。为了达到更高的精度,召回率变得相当低。

Comparison with Other Baselines:

五、分析

1、How the Decision Lists Look Like:

图中展示了学习到的一些典型的决策列表示例。注意,对于每个制造商的DIMM,从10次交叉验证中学习到10个列表。由于不同运行中训练集的差异,这些列表之间存在较小的差异。这里挑选那些决策列表,它们的规则在许多其他列表中都能观察到。针对不同厂家DIMM的决策列表也存在较大差异,说明针对不同厂家DIMM预测UE需要不同的预测机制。

2、Precision-Recall Trade-off:

在先前图中,第三条规则比第一条规则更具一般性,即任何适用于第一条规则的数据样本也适用于第三条规则。然而,第一条规则以较高的置信度得分。如果将θconfidence (选择规则的置信度阈值)设置为较高的值0.5,则不会选择第三条规则。10折交叉验证的准确率提高了63.1 % ( vs.56.7 % ),召回率降低了32.8 %。这表明提高θ置信度限制了决策列表中选择的规则,从而以较低的召回率换取较高的准确率。

3、Vital Role of the Risky CE Indicator and the DIMM Part Number Information:

由表可知,对于制造商C的DIMM,无论是默认的风险CE指标,还是其与DIMM零件编号信息的简单组合,在UE预测中的表现均不准确。但是,在给定银行故障指示器就位的前提下,将DIMM部件号和风险CE指示器结合在一起提高了精度。

相比之下,去除其中的任何一个都表现得不够好。(注意,在分析单个规则的性能时,使用特定DIMM制造商的所有数据,而不是交叉验证中的测试数据。)实际上,对于制造商C的DIMM,在所有的交叉验证运行中,只学习到了零件编号为C1的DIMM特有的规则。对于其他部件编号的DIMM,数据非常稀疏,即使我们已经在10折交叉验证中使用了90 %的数据进行训练,也无法识别出置信度高于θ confidence的可靠的UE预测规则。

表中给出了不同DIMM部件编号的预测结果,可以看出,对于部分部件编号为C1的DIMM,由于成功识别了UE易发故障,UE预测具有很高的精度( 100 %精度)。该预测覆盖了相当一部分( 40 %召回率)的零件编号的DIMM,但没有覆盖其他零件编号的DIMM。这表明识别出的UE易发故障是特定于某个DIMM部件号的。

4、Importance of Generalization across Different Part Numbers:

虽然有时DIMM零件编号信息很重要,但在某些情况下,在规则的前提下使零件编号可选,从而允许在同一制造商的不同零件编号之间进行泛化。对于厂商B的DIMM,在10折交叉验证学习到的规则的前提条件中,只看到DIMM零件编号B1的存在。然后将预测结果分解为表中不同的DIMM零件编号。虽然部分编号B3、B4、B5、B7和B8不在学习到的规则的前置条件中,但是一些更通用的规则提供了不错的性能。这表明UE易发故障可以通用于某个DIMM制造商。

The End

致谢


感谢本次论文解读者,来自华东师范大学的硕士生梁宇炯,主要研究方向为SSD和DRAM故障预测。


 点一下“阅读原文”获取论文

SSDFans AI+IOT+闪存,万物存储、万物智能、万物互联的闪存2.0时代即将到来,你,准备好了吗?
评论
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 103浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 107浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 170浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 138浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 141浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 85浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 143浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 110浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 114浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 142浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 126浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 92浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 93浏览
我要评论
0