从手写代码到AUTOSAR工具链_MCAL应用篇

汽车ECU开发 2023-05-30 08:59

1 引言

AUTOSAR分层架构中,MCAL是最基础的一层。由于该层直接和单片机打交道,在整个开发流程中往往最靠前,在PCB测试过程中也发挥着至关重要的作用。

本文以MCAL的串口模块为例,分别讲述UART手工和工具链编程的方法。对于MCAL的其它模块,设计思路和步骤是类似的,可参照本文的要点进行开发。

2 基本概念

为表述方便,首先对本文中出现的概念或术语进行说明,文中黑体字为“官方定义”,红体字加入了本人的理解。

2.1 MCAL

MCALMicrocontroller Abstraction Layer)指微控制器抽象层,是实现不同硬件接口统一化的特殊层。通过微控制器抽象层可将硬件封装起来, 避免上层软件直接对微控制器的寄存器进行操作。微控制器抽象层包括微控制器驱动(Microcontroller Drivers)、存储器驱动(Memory Drivers)、通信驱动(Communication Drivers)以及I/O驱动(I/O Drivers

简单来说,MCAL就是主控芯片(单片机)的外设驱动。

2.2 静态代码和动态代码

静态代码(Static Code)指各模块功能的具体实现代码;动态代码(Dynamic Code)指由配置工具根据相关配置信息生成的代码,也称为配置代码。

AUTOSAR应用过程中,静态代码实现了某模块的全部功能,且其内容在工具链不更新的前提下是不会改变的。而具体用到该模块的哪些功能以及用何种方式实现这些功能,是由用户通过工具配置出来的,配置结果生成在动态代码的程序文件中。

2.3 配置文档和设计文档

在工具链开发过程中,文档的编写显得尤为重要。原因是各个功能块都是用工具配置出来的且生成代码量极其庞大,通过代码研读的方式分析查找问题不太现实,需要把整个工作过程记录下来。在MCAL开发过程中最好输出如下2个文档。

设计文档:记录MCAL模块的整个设计过程,包括MCAL相关模块的配置、初始化函数的调用、功能具体实现和调试过程等。

配置文档:作为设计文档的一部分,聚焦MCAL本模块配置的详细步骤。

2.4 MCAL用户手册

MCAL用户手册(User Manual)作为MCAL开发过程中最重要的文档,存在于“EB Tresos Studio”(MCAL配置工具)的安装包中。

3 设计思路

下面着重讲述手工方式和工具链方式设计主控芯片外设驱动在思路上的差别。

3.1 单片机驱动手工编程设计思路

单片机底层驱动手工编程的设计步骤如图3-1所示。

3-1: 手写代码实现单片机外设驱动步骤

3.2 单片机驱动工具链开发设计思路

单片机底层驱动工具链开发的设计步骤如图3-2所示。

3-2: 工具链开发实现单片机外设驱动步骤

3.3 注意事项

这里着重强调一点,在用工具链开发单片机外设驱动的过程中,千万不要像传统方法那样研究单片机的寄存器和时序。AUTOSAR工程数据结构复杂,函数调用层级众多,在短时间内将某个模块的静态代码研究明白不太现实。从实例和配置项含义入手,再配合以局部改动和调试,往往能取得事半功倍的效果。

4 手写代码实现方法

用手工编程方式实现单片机UART模块,主要包括初始化、中断处理、数据收发等几部分,收发数据往往以字节为单位进行,图4-1和图4-2为手工方式实现UART模块的代码段截图。

4-1: UART手写代码截图-寄存器配置

4-2: UART手写代码截图-功能实现

5 AUTOSAR工具链实现方法

下面列出AUTOSAR工具链实现UART功能的步骤,这里将TC275P14.10P14.8用做UART的发送和接收管脚。

注:EcuMOS等模块配置在前面的文章中讲述过,本文不再赘述,感兴趣的读者可参照本公众号之前的文章。

《从手写代码到AUTOSAR工具链_RTE入门篇》;

《从手写代码到AUTOSAR工具链_EcuM应用篇》;

《从手写代码到AUTOSAR工具链_BswM应用篇》;

《从手写代码到AUTOSAR工具链_工程创建与模块集成》。

5-1: 主控芯片和工具一览表

序号

内容

1

主控芯片

Infinean TC275

2

MCAL工具

EB Tresos Studio 16.0

3

AUTOSAR工具

ETAS ISOLAR-AB 4.0

4

OS工具

RTA-OS 5.6.3

5

IDE

Hightec 4.9.2


5.1 Port模块配置

首先需要配置参与串口通信的P14.8P14.10,重点是将P14.10的功能配置为“ATX1”。

5-2: P14.8参数配置

序号

配置项

配置值

说明

1

PortPinId

232

每个管脚唯一的ID,不可配置

2

PortPinSymbolicName

PORT_14_PIN_8

用户为P14.8管脚定义的名字

3

PortPinDirection

PORT_PIN_IN

管脚用作输入

4

PortPinDirectionChangeable

NC

因未使能相应API函数,不可配置

5

PortPinInputCharacteristic

PORT_PIN_IN_NO_PULL

无上下拉输入

6

PortPinInputHysteresis

FALSE

不启用滞后功能

7

PortPinOutputCharacteristic

NC

输入管脚不可配置

8

PortPinLevelValue

PORT_PIN_LEVEL_LOW

管脚缺省值为0

9

PortPinInitialMode

PORT_PIN_MODE_GPIO

用作通用输入输出管脚

10

PortPinModeChangeable

NC

因未使能相应API函数,不可配置

11

PortPinDriverStrength

NC

输入管脚不可配置

12

PortPinPadLevel

PORT_PDR_CMOS_AUTOMOTIVE_LEVEL

管脚电平级别:车辆电平

13

PortPinAnalogInput

NC

非特定管脚不可配置

14

PortPinControllerSelect

NC

非特定管脚不可配置

5-3: P14.10参数配置

序号

配置项

配置值

说明

1

PortPinId

234

每个管脚唯一的ID,不可配置

2

PortPinSymbolicName

PORT_14_PIN_10

用户为P14.10管脚定义的名字

3

PortPinDirection

PORT_PIN_OUT

管脚用作输出

4

PortPinDirectionChangeable

NC

因未使能相应API函数,不可配置

5

PortPinInputCharacteristic

NC

输出管脚不可配置

6

PortPinInputHysteresis

NC

输出管脚不可配置

7

PortPinOutputCharacteristic

PORT_PIN_OUT_PUSHPULL

推挽输出

8

PortPinLevelValue

PORT_PIN_LEVEL_LOW

管脚缺省值为0

9

PortPinInitialMode

PORT_PIN_MODE_ALT4

可选输出功能1TOUT71

10

PortPinModeChangeable

NC

因未使能相应API函数,不可配置

11

PortPinDriverStrength

PORT_CMOS_SPEED_GRADE1

驱动强度:CMOS速度等级1

12

PortPinPadLevel

PORT_PDR_CMOS_AUTOMOTIVE_LEVEL

管脚电平级别:车辆电平

13

PortPinAnalogInput

NC

非特定管脚不可配置

14

PortPinControllerSelect

NC

非特定管脚不可配置


5.2 Mcu模块配置

Mcu配置分为AscLinClock两部分。

5.2.1 ASCLIN配置

按照图5-1和图5-2所示将AscLin1配置为UART驱动。

5-1: MCU配置进入

5-2: ASCLIN配置

5.2.2 时钟配置

按照图5-3和图5-4配置ASCLIN模块的时钟,本文示例配置为100MHz

5-3: 时钟配置进入

5-4: ASCLIN时钟配置

5.3 Uart模块配置

依次进行通用箱配置和UART集配置。

5.3.1 通用箱配置

下面介绍UART模块通用(General)箱的配置情况,图5-5为配置界面,表5-4为各项的配置参数和简要说明。

5-5: UART模块通用箱配置界面

5-4: UART模块通用箱参数配置

序号

配置项

配置值

说明

Config Variant

VariantPostBuildSelectable


Name

UartGeneral

配置箱名称

UartDevErrorDetect

false

开发错误检测禁止

UartIndex (0 -> 255)

0

Uart索引,必须为0

UartVersionInfoApi

false

版本信息API禁用

UartDeInitApi

false

Uart反向初始化API禁用

UartAbortReadApi

false

Uart中止接收API禁用

UartAbortWriteApi

false

Uart中止发送API禁用

UartPBFixedAddress

false

配置参数集不存放固定地址

10 

UartDebugSupport

false

Uart调试功能禁用

11 

UartResetSfrAtInit

false

禁止在Uart初始化前复位相关SFR的缺省值

12 

UartSleepEnable

true

当收到MCU的休眠请求时ASCLIN模块进入休眠状态

13 

UartRunningInUser0Mode

false


14 

UartUserModeInitApiEnable

false


15 

UartUserModeDeInitApiEnable

false


16 

UartUserModeRuntimeApiEnable

false



5.3.2 UART集配置

下面介绍Uart集(UartConfigSet)箱的配置情况,图5-6为其配置界面。

5-6: Uart集配置界面

1.通用配置

5-7Uart集通用(General)箱的配置界面,表5-5各项的配置参数和简要说明

5-7: Uart集通用参数配置界面

5-5: Uart集通用参数配置

序号

配置项

配置值

说明

1

UartSysClockRef

/Mcu/Mcu/McuModuleConfiguration_0/McuClockSettingConfig_0/McuClockReferencePoint

Uart系统时钟引用,MCU模块配置值为100MHz


2.Uart通道配置

5-8Uart通道(UartChannel)箱的配置界面,表5-6各项的配置参数和简要说明

5-8: Uart通道配置界面

5-6: Uart0通道参数配置

序号

配置项

配置值

说明

1

Name

UartChannel_0

配置箱名称

2

UartBaudRate

19200

Uart通信波特率

3

UartHwUnit

ASCLIN1

硬件ASCLIN通道,使用P14.8RXD)和P14.10TXD)口

4

UartChannelId

0

Uart通道ID,不可配置

5

UartAutoCalcBaudParams

true

自动波特率计算使能

6

UartChanBaudNumerator

-

BRG寄存器的分子域,自动计算波特率时无需配置

7

UartChanBaudDenominator

-

BRG寄存器的分母域,自动计算波特率时无需配置

8

UartChanBaudPrescalar

-

BITCON寄存器的分频域,自动计算波特率时无需配置

9

UartChanBaudOverSampling

-

BITCON寄存器的采样过密域,自动计算波特率时无需配置

10

UartRxPinSelection

SELECT_DATALINE_D

Rx口选择:P14.8ASCLIN1的数据线D

11

UartDataLength

8

Uart数据长度

12

UartStopBits

1

Uart停止位

13

UartParityBit

NOPARITY

Uart奇偶校验

14

UartCTSEnable

false

CTS功能禁止

15

UartCTSPolarity

-

CTS功能禁止时无需配置

16

Name

UartNotification

配置箱名称

17

UartTransmitNotifPtr

UartTransmitNotifPtr

发送完毕的通知函数

18

UartRecieveNotifPtr

UartReceiveNotifPtr

接收到数据的通知函数

19

UartAbortTransmitNotifPtr

NULL_PTR

中止发送操作后调用

20

UartAbortReceiveNotifPtr

NULL_PTR

中止接收操作后调用

波特率计算公式(fA = 100MHz


5.3.3 版本配置

下面介绍Uart模块版本(Published Information)箱的配置情况,图5-9为配置界面,表5-7为各项的配置参数和简要说明。

5-9: Uart模块版本箱配置界面

5-7: Uart模块版本箱参数配置

序号

配置项

配置值

说明

1

ArMajorVersion

0

Autosar主版本,不可配置

2

ArMinorVersion

0

Autosar子版本,不可配置

3

ArPatchVersion

0

Autosar补丁版本,不可配置

4

SwMajorVersion

1

软件主版本,不可配置

5

SwMinorVersion

3

软件子版本,不可配置

6

SwPatchVersion

0

软件补丁版本,不可配置

7

ModuleId

255

模块ID,不可配置

8

VendorId

17

供应商ID,不可配置

9

VendorApiInfix

-

API中缀,不可配置

10

Release

_TRICORE_TC275

发布,不可配置

5.4 Irq模块配置

根据需要配置UART模块的中断类型和中断类别,UART的中断类型包括Tx中断、Rx中断和Err中断;中断类别分为一类中断和二类中断,两者的区别和配置方法如表5-8所列。

5-8: 中断类别说明

事项

一类中断

二类中断

含义

中断服务子程序直接响应

由操作系统接管

类别配置

MCALIrq模块配置为CAT1

MCALIrq模块配置为CAT23

优先级配置

MCALIrq模块中配置

RTA-OS中配置,MCALIrq模块写0

应用

通常用于与DMA配合的收发中断

用于不需要与DMA配合的中断

中断初始化函数调用

必须调用相应的中断初始化函数

无需调用相应的中断初始化函数

配置的目的是为了打开Xxx_Irq.c中的相应宏,如图5-10所示

5-10: 中断服务子程序示例

数值越大优先级越高

DMA配合的中断,处理源(IrqTosConfig)配置为DMA;其它中断配置为相应的CPUx

中断初始化函数的格式:Irq_Init

5.4.1 MCAL中断配置

按照图5-11和图5-12配置MCALIrq模块,配置参数如表5-9所列,其余项使用缺省值

5-11: AscLin中断配置进入

5-12: AscLin中断配置

5-9: AscLin中断参数配置

序号

配置项

配置值

说明

1

IrqAscLin1TxCat

CAT23

选择二类中断

2

IrqAscLin1RxCat

CAT23

选择二类中断

3

IrqAscLin1ErrorCat

CAT23

选择二类中断

4

IrqAscLin1TxPrio

0

二类中断优先级在RTA-OS中配置

5

IrqAscLin1RxPrio

0

二类中断优先级在RTA-OS中配置

6

IrqAscLin1ErrorPrio

0

二类中断优先级在RTA-OS中配置

7

IrqAscLin1TxTos

CPU0

处理源为CPU0

8

IrqAscLin1RxTos

CPU0

处理源为CPU0

7

IrqAscLin1ErrTos

CPU0

处理源为CPU0


5.4.2 RTA-OS中断配置

RTA-OS环境下按照图5-13配置表5-10列出的中断。

 

5-13: OS中断配置

5-10: OS中断配置参数

序号

名称

类别

优先级

地址

1

ASCLIN1EX_ISR

CATEGORY_2

37

ASCLIN 1 Error (SRC_ASCLIN1ERR)

2

ASCLIN1RX_ISR

CATEGORY_2

38

ASCLIN 1 Receive (SRC_ASCLIN1RX)

3

ASCLIN1TX_ISR

CATEGORY_2

39

ASCLIN 1 Transmit (SRC_ASCLIN1TX)


注意:上表中的“名称”项非自行命名,须与Xxx_Irq.c中的名称一致,否则编译无法通过。

5-14: 中断配置名称示例

5.4.3 代码生成

需在RTA-OS中生成OS代码,再在ISOLAR-AB中进行抽取、BSW代码生成、RTE代码生成等操作。

5.5 初始化函数调用

UART模块初始化函数调用在EcuM模块中进行。

5.5.1 模块配置

ISOLAR-AB中按照图5-15和图5-16的步骤配置表5-11中的参数。

5-15: EcuM配置启动

5-16: EcuM串口初始化配置

5-11: Uart初始化参数配置

序号

配置项

配置值

说明

1

ShortName

Uart

配置箱名称

2

EcuMModuleID

Uart

初始化模块的短名称

3

EcuMModuleParameter

POSTBUILD_PTR

函数原型和输入参数定义

4

EcuMModuleService

Init

模块初始化方式,按照这里配置的初始化函数调用方式为Uart_Init(&Uart_Config)

5

EcuMRbDriverInitCoreId

-

指定驱动初始化被哪个核调用

6

EcuMRbMonitoringCapable

-

指定模块不生成监控服务

7

EcuMRbSequenceID

-

生成的功能桩基于模块配置的顺序

8

EcuMModuleRef

-

模块示例的外部引用,不配置EcuMModuleID时有效


5.5.2 代码编写

在程序文件中编写如图5-17所示的宏定义。

5-17: Uart初始化宏定义

5.6 调试代码编写

UART模块常用的API函数如表5-12所列。

5-12: UART模块API函数功用

序号

函数名

输入参数

输出参数

说明

1

Uart_Init

Uart配置集指针

UART模块初始化

2

Uart_Read

Channel:接收数据的Uart通道

MemPtr:接收数据存储首地址

Size:准备接收的字节数

UART接收

3

Uart_Write

Channel:发送数据的Uart通道

MemPtr:发送数据存储空间首地址

Size:要发送的字节数

UART发送

4

UartTransmitNotifPtr

ErrorId:错误ID

UART发送完毕通知函数

5

UartReceiveNotifPtr

ErrorId:错误ID

UART接收完毕通知函数

调试代码的功用:将接收到的25字节数据发出,图5-18为其主要代码的截图。

如果接收的数据少于25字节,只有在收全25字节后,才执行数据发送的操作;如果接收的数据多于25字节,只接收前25字节并发出。

5-18: UART收发调试核心代码

推荐阅读

聊聊自动驾驶应用层软件开发

一文搞懂CAN收发器TJA1145

车载抬头显示系统(HUD)历史及发展

车身控制器功能规范

小鹏P7的热管理系统详解

大众ID4.X内部ECU技术细节整理

比亚迪海豹整车技术整理

揭秘理想的整车电子电气架构

国内主机整车EEA架构汇总

谈谈Bootloader自更新

谈谈对两家AUTOSAR工具看法

汽车软件需求是如何变成用户功能?

汽车E/E架构的网络安全分析

电子电气架构设计需要考虑哪些方面?

深度解读汽车域控制器
自动驾驶域控制器信息梳理
谈谈对汽车OTA的理解

分享不易,恳请点个【👍】和【在看】

汽车ECU开发 专注于汽车电子ECU软件开发,技术分享。
评论 (0)
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 147浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 89浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 191浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 86浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 87浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 113浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 187浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 108浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 156浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 149浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦