图文并茂,一文讲透C语言结构体内存对齐

↑点击上方蓝色字体,关注“嵌入式软件实战派”获得更多精品干货。


(以下有约5000字内容,建议收藏再读,推荐下载源码自行测试以加深理解。)


面试官:你知道C语言的结构体对齐吗? 

应聘者:听说过……平时很少关注 

……

面试官:好吧,那回去等通知吧 


C语言结构体对齐问题,是面试必备问题。
本文,除了用图解的方式讲清楚结构体知识点外,还将为你解答以下问题:
  • 为什么会有结构体内存对齐?
  • 结构体怎么对齐?
  • 学习结构体对齐有什么用?
  • 结构体对齐有没有实际应用?


▍结构体内存对齐的原因
一句话,为了提高效率,这个跟芯片设计有关。
自从我们刚学习编程开始,就会接触到例如字、双字、四字等概念这里涉及到内存边界问题,它们的地址分别是可被2/4/8整除的。另外,在汇编中,不同长度的内存访问会用到不同的汇编指令。
如果,一块内存在地址上随便放的,CPU有可能就会用到多条指令来访问,这就会降低效率。
对于32位系统,如下图的A可能需要2条指令访问,而B只需1条指令。


▍结构体内存对齐的规则
1. C语言基本类型的大小
不要瞎猜,直接上代码。 每个平台都不一样,请读者自行测试,以下我是基于Windows上MinGW的GCC测的。
#define BASE_TYPE_SIZE(t)   printf("%12s : %2d Byte%s\n", #t, sizeof(t), (sizeof(t))>1?"s":"")void base_type_size(void){ BASE_TYPE_SIZE(void); BASE_TYPE_SIZE(char); BASE_TYPE_SIZE(short); BASE_TYPE_SIZE(int); BASE_TYPE_SIZE(long); BASE_TYPE_SIZE(long long); BASE_TYPE_SIZE(float); BASE_TYPE_SIZE(double); BASE_TYPE_SIZE(long double); BASE_TYPE_SIZE(void*); BASE_TYPE_SIZE(char*); BASE_TYPE_SIZE(int*);  typedef struct  { }StructNull; BASE_TYPE_SIZE(StructNull); BASE_TYPE_SIZE(StructNull*);}
结果是:
 void : 1 Byte char : 1 Byte short : 2 Bytes int : 4 Bytes long : 4 Bytes long long : 8 Bytes float : 4 Bytes double : 8 Bytes long double : 12 Bytes void* : 4 Bytes char* : 4 Bytes int* : 4 Bytes StructNull : 0 Byte StructNull* : 4 Bytes
这些内容不用记住,不同平台是不一样的,使用之前,一定要亲自测试验证下,但是可以总结出以下信息:
  • void类型不是空的,占一个字节

  • long不一定比int大

  • C语言空结构体的大小为0(注意:C++的为1)

  • 不管什么类型,指针都是相同大小的


2. C语言结构体的内存对齐
我先看个例子:
#define offset(type, member) (size_t)&(((type *)0)->member)#define STRUCT_E_ADDR(s,e)          printf("%5s size = %2d %16s addr: %p\n", #s, sizeof(s), #s"."#e, &s.e)#define STRUCT_E_OFFSET(s,e) printf("%5s size = %2d %16s offset: %2d\n", #s, sizeof(s), #s"."#e, offset(__typeof__(s),e))#define STRUCT_E_ADDR_OFFSET(s,e) printf("%5s size = %2d %16s addr: %p, offset: %2d\n", #s, sizeof(s), #s"."#e, &s.e, offset(__typeof__(s),e))
typedef struct { int e_int; char e_char;}S1;S1 s1;STRUCT_E_ADDR_OFFSET(s1, e_int);STRUCT_E_ADDR_OFFSET(s1, e_char);typedef struct { int e_int; double e_double;}S11;S11 s11; STRUCT_E_ADDR_OFFSET(s11, e_int);STRUCT_E_ADDR_OFFSET(s11, e_double);
咦……这宏定义是啥意思?传送门:《 基于C99规范,最全C语言预处理知识总结
输出结果:
 s1 size = 8 s1.e_int addr: 0028FF28, offset: 0 s1 size = 8 s1.e_char addr: 0028FF2C, offset: 4 s11 size = 16 s11.e_int addr: 0028FF18, offset: 0 s11 size = 16 s11.e_double addr: 0028FF20, offset: 8
结论1:一般情况下, 结构体所占的内存大小并非元素本身大小之和。
结论2: 不严谨地,结构体内存的大小按最大元素大小对齐。
继续看例子:
 typedef struct  { int e_int; long double e_ld; }S12;
typedef struct { long long e_ll; long double e_ld; }S13;
typedef struct { char e_char; long double e_ld; }S14;
    S12 s12; S13 s13; S14 s14; STRUCT_E_ADDR_OFFSET(s12, e_int); STRUCT_E_ADDR_OFFSET(s12, e_ld); STRUCT_E_ADDR_OFFSET(s13, e_ll); STRUCT_E_ADDR_OFFSET(s13, e_ld); STRUCT_E_ADDR_OFFSET(s14, e_char); STRUCT_E_ADDR_OFFSET(s14, e_ld);
输出结果:
 s12 size = 16 s12.e_int addr: 0028FF08, offset: 0 s12 size = 16 s12.e_ld addr: 0028FF0C, offset: 4 s13 size = 24 s13.e_ll addr: 0028FEF0, offset: 0 s13 size = 24 s13.e_ld addr: 0028FEF8, offset: 8 s14 size = 16 s14.e_char addr: 0028FEE0, offset: 0 s14 size = 16 s14.e_ld addr: 0028FEE4, offset: 4
出现问题了,你看s12和s14,sizeof(long long)应该是12,按结论而推断sizeof(s12)和sizeof(s13)应该都是24。
这里跟平台和编译器的一个模数有关。
对结论2修正: 结构体内存大小应按最大元素大小对齐,如果最大元素大小超过模数,应按模数大小对齐。
额外再送一条结论:如果结构体的最大元素大小超过模数, 结构体的起始地址是可以被模数整除的。如果,最大元素大小没有超过模数大小,那 它的起始地址是可以被最大元素大小整除
那么,这个模数是什么?

每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。

网上流传一个表:

平台

长度/模数

char

short

int

long

float

double

long long

long double

Win-32

长度

1

2

4

4

4

8

8

8

模数

1

2

4

4

4

8

8

8

Linux-32

长度

1

2

4

4

4

8

8

12

模数

1

2

4

4

4

4

4

4

Linux-64

长度

1

2

4

8

4

8

8

16

模数

1

2

4

8

4

8

8

16

本文的的例子我用的是MinGW32的GCC来测试,你猜符合上表的哪一项?
别急,再看一个例子:
 typedef struct  { int e_int; double e_double; }S11; S11 s11;    STRUCT_E_ADDR_OFFSET(s11, e_int); STRUCT_E_ADDR_OFFSET(s11, e_double);
结果是:
 s11 size = 16 s11.e_int addr: 0028FF18, offset: 0 s11 size = 16 s11.e_double addr: 0028FF20, offset: 8
很明显,上表没有一项完全对应得上的。简单汇总以下我测试的结果:

长度/模数

char

short

int

long

float

double

long long

long double

长度

1

2

4

4

4

8

8

12

模数

1

2

4

4

4

8

8

8

所以,再强调一下:因为环境的差异, 在你参考使用之前,请自行测试一下。
另外,提一下:这个模数是可以改变的,可以用预编译命令 #pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。
例如
#pragma pack(1)typedef struct { char e_char; long double e_ld;}S14;#pragma pack()
#pragma是啥玩意?有兴趣可以看看:《 基于C99规范,最全C语言预处理知识总结
好了,我们继续,这似乎没啥技术含量,我们提升下难度:
 typedef struct  { int e_int; char e_char1; char e_char2; }S2;
typedef struct { char e_char1; int e_int; char e_char2; }S3;    S2 s2; S3 s3;
你觉得这俩结构体所占内存是一样大吗?那你就错了:
 s2 size = 8 s2.e_int addr: 0028FED4, offset: 0 s2 size = 8 s2.e_char1 addr: 0028FED8, offset: 4 s2 size = 8 s2.e_char2 addr: 0028FED9, offset: 5 s3 size = 12 s3.e_char1 addr: 0028FEC4, offset: 0 s3 size = 12 s3.e_int addr: 0028FEC8, offset: 4 s3 size = 12 s3.e_char2 addr: 0028FECC, offset: 8
why?
上个图先看看,它们内存是怎么对齐的:

我们套一遍那几条结论就可以知道:
理解 按最大元素大小或模数对齐,就可以看到S2的内存分布;
对于S3,e_int的位置地址,肯定是要按int的大小对齐的(地址可被int大小整除),这样才能提高访问效率。同时,这导致了很大的内存浪费。
以上例子,我们看到挨在一起的两个char会放在同一个对齐单元,如果挨在一起的short和char会不会放一起?
 typedef struct  { char e_char1; short e_short; char e_char2; int e_int; char e_char3; }S4; S4 s4; STRUCT_E_ADDR_OFFSET(s4, e_char1); STRUCT_E_ADDR_OFFSET(s4, e_short); STRUCT_E_ADDR_OFFSET(s4, e_char2); STRUCT_E_ADDR_OFFSET(s4, e_int); STRUCT_E_ADDR_OFFSET(s4, e_char3);
输出结果:
 s4 size = 16 s4.e_char1 addr: 0028FEB4, offset: 0 s4 size = 16 s4.e_short addr: 0028FEB6, offset: 2 s4 size = 16 s4.e_char2 addr: 0028FEB8, offset: 4 s4 size = 16 s4.e_int addr: 0028FEBC, offset: 8 s4 size = 16 s4.e_char3 addr: 0028FEC0, offset: 12

得出一个经验:
我们在定义结构体的时候,尽量把大小相同或相近的元素放一起,以减少结构体占用的内存空间。
再来一个问题:
结构体套着另一个结构体怎么计算?
 typedef struct  { int e_int; char e_char;    }S1;   typedef struct  { S1 e_s; char e_char; }SS1;
typedef struct { short e_short; char e_char; }S6;
typedef struct { S6 e_s; char e_char; }SS2;         SS1 ss1;    STRUCT_E_ADDR_OFFSET(ss1, e_s); STRUCT_E_ADDR_OFFSET(ss1, e_char);
SS2 ss2; STRUCT_E_ADDR_OFFSET(ss2, e_s); STRUCT_E_ADDR_OFFSET(ss2, e_char);
输出结果:
 ss1 size = 12 ss1.e_s addr: 0028FE94, offset: 0 ss1 size = 12 ss1.e_char addr: 0028FE9C, offset: 8 ss2 size = 6 ss2.e_s addr: 0028FE8E, offset: 0 ss2 size = 6 ss2.e_char addr: 0028FE92, offset: 4

得出结论:结构体内的结构体,结构体内的元素并不会和结构体外的元素合并占一个对齐单元。
温馨提示:大家不要刻意去记这些结论,动手去试试并思考下效果会更好。

3. 联合体union的内存对齐
直接上代码:
 typedef union  { char e_char; int e_int; }U1;
U1 u1; STRUCT_E_ADDR(u1, e_char); STRUCT_E_ADDR(u1, e_int);
输出结果:
 u1 size = 4 u1.e_char addr: 0028FF2C u1 size = 4 u1.e_int addr: 0028FF2C
从教科书上,我都可以理解,联合体里面的元素,实际上共享同一个空间。

那么,union跟struct结合呢?

 typedef struct { int e_int1;  union { char ue_chars[9];  int ue_int; }u; double e_double;  int e_int2;  }SU2; SU2 su2;    STRUCT_E_ADDR_OFFSET(su2, e_int1); STRUCT_E_ADDR_OFFSET(su2, u.ue_chars); STRUCT_E_ADDR_OFFSET(su2, u.ue_int); STRUCT_E_ADDR_OFFSET(su2, e_double);    STRUCT_E_ADDR_OFFSET(su2, e_int2)

输出:

 su2 size = 32 su2.e_int1 addr: 0028FEF8, offset: 0 su2 size = 32 su2.u.ue_chars addr: 0028FEFC, offset: 4 su2 size = 32 su2.u.ue_int addr: 0028FEFC, offset: 4 su2 size = 32 su2.e_double addr: 0028FF08, offset: 16 su2 size = 32 su2.e_int2 addr: 0028FF10, offset: 24

实际上跟结构体类似,也没有特别的规则。

顺便提一下,使用union时,要留意平台的大小端问题。

大端模式,是指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放;这和我们的阅读习惯一致。 

小端模式,是指数据的高字节保存在内存的高地址中,而数据的低字节保存在内存的低地址中,这种存储模式将地址的高低和数据位权有效地结合起来,高地址部分权值高,低地址部分权值低。

百度百科——大小端模式

怎么获知自己使用的平台的大小端?Linux有个方法:

 static union {  char c[4];  unsigned long l;  } endian_test = { { 'l', '?', '?', 'b' } }; #define ENDIANNESS ((char)endian_test.l)
printf("ENDIANNESS: %c\n", ENDIANNESS);


4. 位域(Bitfield)的相关

位域在本文没什么好探讨的,在结构体对齐方面没什么特别的地方。

直接看个测试代码,就可以明白:

void bitfield_type_size(void){ typedef struct { char bf1:1; char bf2:1; char bf3:1; char bf4:3; }SB1;
typedef struct { char bf1:1; char bf2:1; char bf3:1; char bf4:7; }SB2;
typedef struct { char bf1:1; char bf2:1; char bf3:1; int bfint:1; }SB3;
typedef struct { char bf1:1; char bf2:1; int bfint:1; char bf3:1; }SB4;
SB1 sb1; SB2 sb2; SB3 sb3;    SB4 sb4; VAR_ADDR(sb1); VAR_ADDR(sb2); VAR_ADDR(sb3); VAR_ADDR(sb4); typedef struct { unsigned char bf1:1; unsigned char bf2:1; unsigned char bf3:1; unsigned char bf4:3; }SB11;
typedef union { SB11 sb1; unsigned char e_char; }UB1; UB1 ub1;
STRUCT_E_ADDR_OFFSET(ub1, sb1); STRUCT_E_ADDR_OFFSET(ub1, e_char);
ub1.e_char = 0xF5; BITFIELD_VAL(ub1, e_char); BITFIELD_VAL(ub1, sb1.bf1); BITFIELD_VAL(ub1, sb1.bf2); BITFIELD_VAL(ub1, sb1.bf3); BITFIELD_VAL(ub1, sb1.bf4);}

输出结果是:

 sb1 size = 1 sb1 addr: 0028FF2F sb2 size = 2 sb2 addr: 0028FF2D sb3 size = 8 sb3 addr: 0028FF24 sb4 size = 12 sb4 addr: 0028FF18 ub1 size = 1 ub1.sb1 addr: 0028FF17, offset: 0 ub1 size = 1 ub1.e_char addr: 0028FF17, offset: 0 ub1 : 1 Byte, ub1.e_char=0xF5 ub1 : 1 Byte, ub1.sb1.bf1=0x1 ub1 : 1 Byte, ub1.sb1.bf2=0x0 ub1 : 1 Byte, ub1.sb1.bf3=0x1 ub1 : 1 Byte, ub1.sb1.bf4=0x6

有几个点需要注意下:

  1. 内存的计算单位是byte,不是bit

  2. 结构体内即使有bitfield元素,其对齐规则还是按照基本类型来

  3. bitfield元素不能获得其地址(即程序中不能通过&取址)


5. 规则总结
首先,不推荐记忆这些条条框框的文字,以下内容仅供参考:
  1. 结构体的内存大小,并非其内部元素大小之和;
  2. 结构体变量的起始地址,可以被最大元素基本类型大小或者模数整除;
  3. 结构体的内存对齐,按照其内部最大元素基本类型或者模数大小对齐;
  4. 模数在不同平台值不一样,也可通过#pragma pack(n)方式去改变;
  5. 如果空间地址允许,结构体内部元素会拼凑一起放在同一个对齐空间;
  6. 结构体内有结构体变量元素,其结构体并非展开后再对齐;
  7. union和bitfield变量也遵循结构体内存对齐原则。



▍编程为什么要关注结构体内存对齐
也许你会问,结构体爱怎么对齐就怎么对齐,我管它干嘛!
1. 节省内存
在嵌入式软件开发中,特别是内存资源匮乏的小MCU,这个尤为重要。如果优化程序内存,使得MCU可以选更小的型号,对于大批量出货的产品,可以带来更高利润。
也许你还还感觉不到,上段代码:
 typedef struct  { int e_int; char e_char1; char e_char2; }S2;
typedef struct { char e_char1; int e_int; char e_char2; }S3; S2 s2[1024] = {0}; S3 s3[1024] = {0};
s2的大小为8K,而s3的大小为12K,一放大,就有很明显的区别了。
2. union的内存对齐需要
对于同一个内存,有时为了满足不同的访问形式,定义一个联合体变量,或者一个结构体和联合体组合的变量。此时就要知道其内存结构是怎么分布的。
3. 内存拷贝

有时候,我们在通信数据接收处理时候,往往遇到,数组和结构体的搭配。

即,通信时候,通常使用数组参数形式接收,而处理的时候,按照预定义格式去访问处理。例如:

U8 comm_data[10];typedef struct{ U8 id; U16 len; U8 data[6];}FRAME;
FRAME* pFram = (FRAME*)comm_data;
此处,必须要理解这个FRAM的内存结构是怎么样的对齐规则。
4. 调试仿真时看压栈数据
在调试某些奇葩问题时,迫不得已,我们会研究函数跳转或者线程切换时的栈数据,遇到结构体内容,肯定要懂得其内存对齐方式才能更好地获得栈内信息。

当然,还有其他方面的原因,在此就不一一列举了。


▍结构体内存对齐 实际应用
上面一个章节已经部分讲到这个结构体内存对齐的应用了,例如通信数据的处理等。另外,再举两个例子:
1. 内存的mapping
假设你要做一个烧录文件,你想往文件头空间128个字节内放一段项目信息(例如程序大小、CRC校验码、其他项目信息等)。第一反应,你会考虑用一个结构体,定义一段这样的数据,程序运行的时候也定义同样的结构体去读取这个内存。但是你需要知道结构体大小啊,这个结构体内存对齐的规则还是需要了解的。
2. 单片机寄存器的mapping
在写MCU驱动的时候,访问寄存器的方式有很多种,但是做到清晰明了,适配性好的,往往需要诸多考量。
直接通过整型指针指到特定地址去访问,是没有问题的,但是对于某一类型的寄存器,往往不是一个固定地址,其后面还有一堆子寄存器属性需要配置。每个地址都通过整型指针访问,那就很多很凌乱。
我们可以通过定义一个特定的结构体,用其指针直接mapping到寄存器的base地址。但是遇到有些地址是空的怎么办?甚至有些寄存器是32位的,有些16位,甚至8位的,各种参差不齐都在里面。
那就要考虑结构体内存对齐了,特别是结构体内有不同类型的元素。

这里只探讨应用场景,具体实现还要根据实际情况来定义。



▍测试源码

篇幅有限,此处不贴完整的源码了。

如果想要获取源码,关注公众号,回复"struct"即可获得下载链接。



往期精彩内容推荐>>>

孔乙己:main函数有四样写法

基于C99规范,最全C语言预处理知识总结

图解栈(Stack)与队列(Queue)

嵌入式软件实战派 专注嵌入式软件开发领域知识传授,包括C语言精粹,RTOS原理与使用,MCU驱动开发,AUTOSAR搭建,软件架构方法设计等。
评论
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 67浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 93浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 107浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 84浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 60浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 55浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 82浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 47浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 55浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 53浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 111浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 155浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 43浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 54浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦