内核并发消杀器(KCSAN)技术分析

Linux阅码场 2023-05-29 08:01

一、KCSAN介绍


KCSAN(Kernel Concurrency Sanitizer)是一种动态竞态检测器,它依赖于编译时插装,并使用基于观察点的采样方法来检测竞态,其主要目的是检测数据竞争。


KCSAN是一种检测LKMM(Linux内核内存一致性模型)定义的数据竞争(data race)的工具,同时它也可以控制报告哪种类型的数据竞争。


KCSAN知道LKMM定义的所有标记原子操作,以及LKMM尚未提到的操作,例如原子位掩码操作(bit mask)。


KCSAN扩展了LKMM,例如通过提供data_race()标记,来表示存在数据竞争和缺乏原子可能性。


1.1 LKMM(Linux内核内存一致性模型)


Linux内核内存模型目前在源代码树中的memory-barrier.txt和atomic_ops.txt文件中有非正式的定义。包含以下组成部分:


  • 变量访问(Variable Access)

使用READ_ONCE()、WRITE_ONCE()和ACCESS_ONCE()宏来保护从共享(但非原子)变量的加载和存储;

  • 内存屏障(Memory Barriers)

一类同步屏障指令,是CPU或编译器在对内存随机访问的操作中的一个同步点,使得此点之前的所有读写操作都执行后才可以开始执行此点之后的操作。比如barrier、smp_mb/smp_wmb/smp_rmb等;

  • 锁操作(Locking Operations)

  • 原子操作(Atomic Operations)

  • 控制依赖(Control Dependencies)

Linux内核提供了一个有限的控件依赖的概念,在某些情况下对依赖控件的存储进行优先加载;

  • RCU宽限期授权关系(Grace-Period Relationships)

允许更新者等待所有已经存在的读侧临界区完成,再回收旧的资源;

  • C11原子原语 (C11 Atomics)

将原子原语的实现委托给编译器;如果多个体系结构采用这种方法,将减少体系结构特定代码的数量。


1.2 数据竞争


为什么要关心数据竞争?

C语言的发展独立于并发性。如果给定的变量或访问没有任何特别之处,则变量只会在响应当前线程的存储时发生变化。

  • C语言和编译器的进化对并发性不敏感

  • 优化编译器正变得越来越丰富

因此,编译器可以并且使用各种优化,包括负载融合、代码重新排序和许多其他可能导致并发算法故障的优化。

读取拆分(单次访问多次读取)

存储拆分(单次访问多次写入)读取融合(编译器直接使用上一次对这个变量的load结果,而不是真正再去load一次)

存储融合(编译器优化写入变量流程,不再真实写入)

代码重排(把一些类似的计算归在一起,节省占用的寄存器,改善现代超标量微处理器里面各个运算单元的利用效率)

虚拟读取(编译器优化会导致多次读取,导致后续加载异常)

虚拟存储(编译器优化会导致多次存储,导致后续存储异常)

.....


因此需要告诉编译器并发代码,Linux提供内存一致性模型,也提供检查方法解决此类问题。


1.2.1 访问方式

  • 普通访问

  • 标记访问


1.2.2 同步冲突访问的检测条件

  • 在访问同一个地方并且至少有一个是写操作

  • 至少有一个是普通访问(比如x+42)

以下线程打钩的是标准做法;打叉的是可能存在数据竞争的情况。


1.2.3 哪些不属于数据竞争

例如:使用不对称的锁机制,并且使用READ_ONCE/WRITE_ONCE标记访问。


二、依赖与配置方案


2.1 版本支持

KCSAN支持GCC/CLANG编译,需要GCC版本11,CLANG 12以上版本。

x86_64: >=5.8  ARM64: >=5.17


2.2 KCSAN工具链支持

cc-option,-fsanitize=thread --param tsan-distinguish-volatile=1


2.3 配置选项支持


三、工作原理与触发条件


3.1 使用方式


检查未标记读取是否写入竞争,会持续扫描内核的主要分支,在访问的内存位置上设置观察点,挑出导致数据争用的数据,并将其报告给内核日志。


●用“软观察点”查找竞争

〇设置观察点和失速通道;

〇如果监测点已经存在,那么竞争检查将照常进行;

〇如果值改变了--> 竞争;

〇失速通道随机延迟,增加观察竞争状态的机会;

默认值:任务[1,80]us,中断[1,20]us。


●为所有检测内存访问设置观察点

〇 注释标记访问,仅用于检查非标记访问是否存在观察点;

KCSAN从不在标记的访问上设置观察点;

如果对并发访问的变量的所有访问都正确地标记了,KCSAN将永远不会触发观察点,因此永远不会报告访问。


●采样: 周期性建立观察点

〇默认值:平均2000次访问。


3.2 KCSAN软观测点


基于地址页索引

〇可以溢出到相邻槽。

〇使用索引确保报告元数据给匹配的生产者/消费者。

具有灵活、可缩放的特点,以数组的形式存放。


代码片段如下:

入口函数check_access,在check_access数据地址、长度、类型;在check_access函数执行find_watchpoint判断。需要检测的ptr已经插桩编译。


3.3 KCSAN 运行流程


  1. 进入check_access函数,格式描述包含数据指针、长度、读写类型;

  2. 确认是否需要观测,需要满足至少一个写操作且为普通访问;

  3. 如果判定需要观测,加入观察列表;

  4. 延时一段时长,查看是否有访问、变更数据等情况;如果有,则生产数据表,并打印数据到控制台;如果没有则退出;

  5. 在步骤3,如果未发现合适的观测点,则该数据运行流程退出



3.4 ASSERT检测机制


KCSAN提供有一种断言检测机制,检查在数据竞争模型以外的情况下提供竞争检测;


3.4.1 ASSERT集合


3.5 KCSAN特点


四、测试套件


4.1 KUNIT测试模型


KCSAN提供KUNIT的支持

  1. 创建多个access_thread线程用于测试用例函数的调用接口;

  2. 挂接console跟踪点,该跟踪点监控串口输出数据;如果有数据竞争报错,可以捕获并判断;

  3. 启动测试用例接口函数,实现测试函数的挂接并提供超时判定(缺省执行500毫秒);

  4. 在执行超时以后,判断输出是否与预想一致;并给出判断结果。


4.2 测试条件


1. 配置CONFIG_KCSAN_KUNIT_TEST=y使能KUNIT

2. KCSAN功能正常开启


4.3 测试环境


QEMU Linux 6.11 core 4 GCC11


测试覆盖:

1. 不同条件下的数据竞争data_race


2.断言函数数据竞争assert_exclusive_x


3. barrier/lock判定


五、过程与案例分析


5.1 KCSAN启动过程

1. 在完成KCSAN配置后,系统启动时有“kcsan:enable early”打印:


2.后台会实时进行观测点的监控与比对,如果比中会有”BUG:KCSAN”控制台打印来描述数据竞争的信息;这些信息包括调用函数、数据竞争地址、CPU号、进程号等;可在不同的测试场景进行压力测试;



3.在运行过程中,查看“KCSAN kernel debug”节点查看当前的状态,这些状态信息包括观测点、数据竞争、ASSERT报错等一系列信息;



5.2 案例一


描述:IGMP协议timer超时与事件函数在读写mr_ifc_count变量的数据竞争

net: igmp: fix data-race in igmp_ifc_timer_expire()


解决办法:

1.  igmp_ifc_event/ igmp_ifc_timer_expire函数在读写mr_ifc_count变量存在数据竞争,需要使用LLKM 访问保护;

2. 修改调用mr_ifc_count点,使用READ_ONCE/WRITE_ONCE保证编译器的一致性;

3. mr_ifc_count和in_dev->mr_ifc_count值不等时启动重传机制;


5.3 案例二


描述:在taskstats_exit()中分配和测试任务统计时,会有一个竞争在读写sig->stats

When assiging and testing taskstats in taskstats_exit() there's a race when writing and reading sig->stats


解决办法:

1. 结构体成员sig->stats存在数据竞争,需要使用LLKM访问保护;

2. smp_load_acquire/smp_store_release函数解决CPU数据同步和编译器同步问题,适用于同一个函数内部的数据竞争;



六、总结


本文从工作原理、运行流程、测试方式等多个方面介绍了KCSAN,旨在让读者能够对KCSAN运行有一个直观的认识,利用KCSAN在产品中解决一些数据竞争问题;数据竞争是一个复杂问题,用KCSAN能帮助大家快速找到数据竞争问题,进而寻找方法解决或规避,本文更多传递是一种发现和解决此类问题的思路。


消杀器技术在不断地迭代和更新,也让大家多一份探寻世界、改变世界的机会;借此机会,站在巨人的肩膀上,让大家看得更远、走得更远,愿大家都有一个美好的明天。


七、参考文档


更多案例分享:

https://github.com/google/kernel-sanitizers/blob/master/kcsan/FOUND_BUGS.md


LKMM:

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0124r2.html


KCSAN ASSERT:

https://www.kernel.org/doc/html/next/dev-tools/kcsan.html#c.ASSERT_EXCLUSIVE_ACCESS


KUNIT测试框架

https://kunit.dev/third_party/kernel/docs/api/test.html?highlight=kunit_expect_false


测试使用内核源码地址

https://kernel.source.codeaurora.cn/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=v6.1.1&id=ebdb69c5b054f115ef5ff72f0bb2aaa1718904e6



Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 159浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 58浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 60浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦