从手写代码到AUTOSAR工具链_EcuM应用篇

汽车电子与软件 2023-05-27 21:12


接上一篇:从手写代码到AUTOSAR工具链 - RTE入门篇


1 引言


EcuMAUTOSAR中最基本也是最重要的BSW模块之一,其使用方法相对简单,但弄清楚其中的运行机制并不容易。本文依旧从传统的手工编程入手,着重突出EcuM的应用方法,对模块的内部机理仅做简单介绍,感兴趣的读者可参考相应AUTOSAR规范。

 

2 EcuM模块简介


EcuM用于ECU状态管理,其主要功用包括:

- 初始化(Init)和反向初始化(DeinitOSSchMBswM和一些基础软件驱动模块。

- 如果需要,配置ECU进入SLEEPSHUTDOWN状态。

- 管理ECU的所有唤醒事件。

 

2.1 EcuM阶段

2-1绘制了EcuM模块的“阶段(Phases)”,包括STARTUPUPSHUTDOWNSLEEP


2-1: EcuM阶段

 

2.1.1 STARTUP阶段

STARTUP阶段的目的是初始化基础软件模块直到通用模式管理机制开始运行。

在调用EcuM_Init函数后,EcuM接管ECU启动程序的控制;随着StartOS的调用,EcuM临时交出控制权。集成者可通过实现“自动启动和EcuM_StartupTwo作为第1个调用行为”的OS任务使EcuM重新获得控制权。

 

2.1.2 UP阶段

UP刚开始时,BSW调度器已经启动,BswM_Init已经被调用。但内存管理没有初始化,没有通信栈,RTE没有启动,SWCs没有启动。进程通过相应的运行实体(Runnables)以特定模式(Startup后下一个配置项)启动,如:BSW主函数,然后以模式改变的任意组合启动BswM执行行为,同时触发或禁用相应的运行实体。

EcuM模块的角度,ECU已经“起来”。BswM模块启动模式仲裁和更多BSW初始化,通过执行BswM行为列表或驱动模式相关调度启动RTESWC

初始化BSW模块和启动SWC可以任意次序进行,直到ECU实现全功能;最后,模式切换停止SWC并反向初始化BSWUP阶段结束,ECU到达可以休眠或下电的状态。

 

2.1.3 SHUTDOWN阶段

SHUTDOWN阶段处理基础软件模块的关闭,最终导致设备关闭或复位。

 

2.1.4 SLEEP阶段

ECUSLEEP阶段处于低功耗状态。通常来说,程序代码不再执行,但仍然有供电,ECU可以被唤醒。EcuM模块提供可配置的硬件休眠模式集,通常在功耗和重启时间之间做出权衡。

EcuM模块根据有意或无意的唤醒事件唤醒ECU,由于无意的唤醒事件应被忽略,EcuM模块提供了一个验证唤醒事件的协议。该协议规定了在处理唤醒源驱动和EcuM之间如何协作处理。

 

2.1.5 OFF阶段

ECU当其下电时进入OFF状态,此时它只能被集成电源控制的唤醒源唤醒。在任何情况下ECU必须能被启动(如:复位事件)。

 

2.2 EcuM结构描述

EcuM模块在大多数情况下仅负责初始化和反向初始化。包括一些基础软件驱动模块的初始化、关闭和唤醒时的重新初始化;OS初始化和关闭。

OS初始化之后,控制传递给BswM之前,EcuM模块仍需承担附加的初始化步骤;在OS关闭之前,BswM立即将执行控制权交还给EcuM模块。

 

2.3 EcuM设计步骤

ETAS公司的ISOLAR-AB工具为例说明EcuM模块的设计步骤。

 

2.3.1 ARXML创建

ISOLAR-AB中创建EcuM_EcucValues.arxml文件并将其拷贝到相应路径下。

 

2.3.2 模块配置

ISOLAR-B中创建并配置EcuM模块。

 

3 控制实例


我们继续以应用在重卡主驾座椅上的ECAS控制器”为例,说明EcuM的实现过程。该控制器的核心功能是“将座椅高度始终保持在设定位置上”,通过控制进气阀和排气阀的开闭调节空气弹簧的充气量,从而实现加载在座椅的重量发生变化时(不坐人或坐不同重量的人)其高度始终不变。表3-1为与之相关的主要部件及其功用。

 

3-1: 座椅ECAS控制器相关主要部件及其功用

序号

部件名称

功用

1

高度传感器

实时采集座椅当前高度

2

进气阀和排气阀

1)进气阀打开,排气阀关闭:空气弹簧充气,座椅高度上升

2)进气阀关闭,排气阀打开:空气弹簧放气,座椅高度下降

3)进气阀和排气阀都关闭:空气弹簧无动作,座椅高度不变

4)进气阀和排气阀都打开:错误状态

 

从前文的描述可以看出,EcuM主要完成车载嵌入式软件“初始化”和“关闭”阶段,即“一头一尾”的工作,中间部分由BswM完成。“座椅ECAS控制器”由于功能比较简单,并没有用到OS,故只需考虑其初始化阶段的程序段即可,表3-2列出了通常情况下应在EcuM初始化的功能块,主要包括单片机外设驱动和外围芯片驱动的初始化。

 

3-2: EcuM初始化模块

序号

分类

函数

功用

1

MCAL

CGC_Init

Clock初始化

2


PORT_Init

Port初始化

3


ADC_Init

ADC初始化

4


TAU0_Init

GPT初始化

5


WDT_Init

Wdg初始化

6

OS

Tim_Init

时间触发时标初始化

7

CDD

BspKey_Init

按键处理初始化

8


In_Init

输入模块初始化

9


Out_Init

输出模块初始化

 

4 手写代码实现方法


手写代码实现程序初始化的部分,还是比较简单的,图4-1为代码截图。

  

4-1: EcuM手写代码实现

 

5 AUTOSAR工具链实现方法


本章介绍在ISOLAR-AB中创建和配置“座椅ECAS控制器”EcuM模块的步骤。

 

5.1 EcuM模块创建和整体配置

首先需要在ISOLAR-B中创建EcuM模块及其ARXML文件,再对其进行“整体配置”,这是后续一系列配置操作的基础。

 

5.1.1 EcuM模块创建

按照图5-1和图5-2所示的步骤创建EcuM模块。


5-1: EcuM模块创建启动


5-2: EcuM模块创建操作

 

5.1.2 EcuM整体配置

按照图5-3所示进入EcuM整体配置界面,可以在这里根据需要配置EcuM主函数调用周期、包含头文件、运行核等参数。

 


5-3: EcuM整体配置界面

 

5.2 EcuM通用配置

该箱包含EcuM的通用配置参数,图5-4为其配置启动界面。


5-4: EcuM通用配置

 

这里面比较重要的配置箱为:EcuM驱动初始化列表〇(EcuMDriverInitListZero)和EcuM驱动初始化列表一(EcuMDriverInitListOne),用于实现表3-2中的初始化函数,AUTOSAR规范还专门对两者的初始化行为给出了建议,如表5-1所列。

 

5-1: EcuM初始化列表

序号

配置项

初始化行为

1

EcuMDriverInitListZero

Det



Dem



...

2

EcuMDriverInitListOne

Mcu



Port



Dio



Gpt



Wdg



Adc



Icu



Pwm



Ocu



...

 

由于座椅ECAS控制器没有DetDem等模块,这里将初始化行为均配置在“EcuMDriverInitListOne”中,表5-2为“Port初始化”的参数配置,其余模块的初始化与之类似。

 

5-2: Port初始化参数配置

序号

配置项

配置值

说明

1

ShortName

PORT

配置箱名称

2

EcuMModuleID

PORT

初始化模块的短名称

3

EcuMModuleParameter

VOID

函数原型和输入参数定义

4

EcuMModuleService

Init

模块初始化方式,按照这里配置的初始化函数调用方式为PORT_Init()

5

EcuMRbDriverInitCoreId

-

指定驱动初始化被哪个核调用

6

EcuMRbMonitoringCapable

-

指定模块不生成监控服务

7

EcuMRbSequenceID

-

生成的功能桩基于模块配置的顺序

8

EcuMModuleRef

-

模块示例的外部引用,不配置EcuMModuleID时有效

 

5.3 EcuM灵活状态机配置

该箱包含EcuM灵活状态机的配置参数,图5-5为其配置启动界面,在其中可按需配置EcuM复位模式、下电原因等参数。

 

5-5: EcuM灵活状态机配置

 

5.4 代码生成

在完成BSW生成操作后,由图5-6的代码截图可以看出,工具链生成的代码与手工编程的代码类似。

 

5-6: EcuM模块工具链生成代码截图

 

6 下期预告

不知道大家是否还记得上期《从手写代码到AUTOSAR工具链_RTE入门篇》中没有说到的算法模块初始化函数Controller_initialize的调用,通过本文讲述的EcuM方式实现当然是可以的,不过对于应用层初始化的调用,更常用的做法是在“ECUM_STATE_RUN”中实现,这就涉及到AUTOSAR的另一个模块 - BswM的使用。

  

AUTOSAR规范中,BswM是一个重要、有用、又好玩的模块,我研究了3次才想到了一个将其功用描述清楚的办法,我们下期讨论,敬请期待。


—END—

添加下方信加入汽专业交流群

(仅限专业人士,添加备注单位+姓名)



汽车电子与软件 主要介绍汽车电子软件设计相关内容,每天分享一篇技术文章!
评论 (0)
  • 一、汽车智能化浪潮下的蓝牙技术革新随着智能网联汽车的快速发展,车载信息娱乐系统(IVI)正从单一的驾驶辅助向“第三生活空间”转型。蓝牙技术作为车内无线连接的核心载体,承担着音频传输、设备互联、数据交互等关键任务。然而,传统方案中MCU需集成蓝牙协议栈,开发周期长、成本高,且功能扩展性受限。WT2605C蓝牙语音芯片应势而生,以双模蓝牙SOC架构重新定义车用蓝牙系统的开发模式,通过“多、快、好、省”四大核心价值,助力车企快速打造高性价比的智能座舱交互方案。二、WT2605C芯片的四大核心优势1.
    广州唯创电子 2025-04-17 08:38 27浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 52浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 131浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 40浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 122浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 64浏览
  • 自动驾驶技术的飞速发展,正在重新定义未来出行的边界。从感知到决策,从规划到控制,每一个环节都离不开海量、精准的高质量数据支撑。然而,随着传感器数量的增加和数据规模的指数级增长,行业正面临一系列挑战:多源传感器数据的时间同步难题、复杂数据格式的适配、测量技术的灵活性不足、设备集成周期冗长等,这些问题正成为自动驾驶研发与测试的“隐形瓶颈”。基于技术积累与行业洞察,本文分享一套创新的ADAS时空融合数据采集方案。通过硬件与软件的深度协同优化,能够很好地解决数据采集中的核心痛点,还为自动驾驶研发提供了高
    康谋 2025-04-17 09:54 47浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 71浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 50浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 64浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 67浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 111浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 24浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 33浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦