面试爱问之结构体对齐

小飞哥玩嵌入式 2023-05-25 21:42
C语言结构体对齐问题,是面试必备问题。我参与招聘技术面试的时候,也喜欢问这个技术点。
这不是在面试时要装B,也不是要故意难为一下面试者,而是这个知识点比较基础,但很重要。
网上搜出来的嵌入式或C语言笔试题,很多都有这种题目,连《程序员面试宝典》也有讲解这种题目。

结构体对齐知识点考察,俨然成为编程技术岗面试笔试的一种标配。
我以前找工作被问这种题的时候就经常想,结构体对齐这个东西平常很少用,考这东西干嘛?为什么结构体对齐那么重要。
看看这个例子
    typedef struct     {        int e_int;        char e_char1;        char e_char2;    }S2;
typedef struct { char e_char1; int e_int; char e_char2; }S3;    S2 s2; S3 s3;

你觉得这俩结构体所占内存是一样大吗?其实不是!

好像也没什么啊,一不一样大对于C语言程序员有什么所谓!

也许你还还感觉不到,上段代码:

    S2 s2[1024] = {0};    S3 s3[1024] = {0};

对于32位系统,s2的大小为8K,而s3的大小为12K,一放大,就有很明显的区别了。

再举个例子:

unsigned char bytes[10]={0};int* p = (int*)&bytes[3];*p = 0x345678;
你觉得执行上面的代码会发生什么情况?Warining?只是Warning么?!
以前我也没觉得懂得这个结构体对齐或者内存对齐有多重要,直到已经从事了嵌入式开发经验不断积累,才慢慢体会到,这是一种很基础的知识,就因为这个东西不常用,而出现相关的问题是非常致命的,排查起来成本非常高。
有个小伙伴,因为一个内存对齐(结构体对齐相关知识点)问题导致的偶发性Exception问题,折腾了一个多星期。
由于项目接近尾声,出现这种问题,项目经理、老板都操心得不得了。天天不是奶茶水果,就是宵夜,把小伙伴当宝贝来哄,为的就是快速定位这个问题。
然而,他们日以继夜的排查了一个多星期,依然一脸懵逼。
直到让我参与进来支援,我通过仿真方式碰巧捕捉到了这种异常情况。问题的根本原因就是强制类型转换导致的内存对齐问题。篇幅有限,这个故事,以后慢慢细讲。
接下来先看看,结构体对齐的知识点。
结构体对齐,说不难吧,我研究了很多次,都没完全记住;说难吧,理解其原因本质,就易如破竹。
结构体对齐,其实其本质就是内存对齐。
什么以最大元素变量为单位,什么最小公倍数等等法则,通通都是让你死记硬背的,没两天就忘了。
为什么要结构体对齐,原因就是内存要对齐,原因是芯片内存的制造限制,是制造成本约束,是内存读取效率要求。
如果你上学的时候认真学习过微机原理,应该还记得,芯片的地址总线和数据总线这个概念吧。没学过微机原理也没关系,8位单片机、16位单片机和32位单片机等等,这些总得听说过吧。

这个8位、16位和32位等,指的是单片机一次处理数据的宽度,也就和数据总线相关了。
细心的小伙伴会知道,16位单片机的通用寄存器例如R0的长度是2个字节的,而32位的是4字节的。
也就是说16位单片机,单指令一次访问数据是2个字节,而32位单片机可以访问4字节。
为了提高MCU的运行效率,内存设计上,进来适应这个CPU的总线访问。以32位MCU为例,其内存一般都是每4字节(32位)为一个小单元,有时候也叫1个字(Word)。
注意:字节,这个概念长度是固定的,就是8bit;而,却不是固定的,跟CPU或系统位数有关,有时候还会出现字、双字这些概念,举例说明下:
32位计算机:1字=32位=4字节,64位计算机:1字=64位=8字节
所以,对于C语言的变量的存放和访问,都会按着这单位来,例如32位系统中,char是一个字节的,就按Byte来,int是4字节的,那么按Word来。
为什么要这样呢?
如果,一块内存在地址上随便放的,CPU有可能就会用到多条指令来访问,这就会降低效率。
对于32位系统,如下图的A可能需要2条指令访问,而B只需1条指令。

不仅单片机这样,我们常用的计算机也是这样,你看内存条,长这样的:

你以为,通过总线的方式可以随便访问一个地址吗

但是,为了提高访问速度,其设计是这样的:

这样,这个地址就必须是8的倍数。
如果你要从不对齐的内存读取数据,虽然在C语言编程上感觉不到这样的操作有什么区别,但CPU是分开多次读出来的。
这就是内存对齐了。int8(即char)是以1字节对齐,int16是以2字节对齐,而int32是以4字节对齐的,等等。
(以上案例看不懂?推荐去B站看这个视频:【Golang】这个内存对齐呀!?_哔哩哔哩_bilibili,我上面的图也是参考这个视频的。)
世界上CPU平台、系统那么多,我们怎么知道哪个类型到底有多长,是以哪种长度对齐的?

不要瞎猜,直接上代码。每个平台都不一样,请读者自行测试,以下我是基于Windows上MinGW的GCC测的。

#define BASE_TYPE_SIZE(t)   printf("%12s : %2d Byte%s\n", #t, sizeof(t), (sizeof(t))>1?"s":"")void base_type_size(void){    BASE_TYPE_SIZE(void);    BASE_TYPE_SIZE(char);    BASE_TYPE_SIZE(short);    BASE_TYPE_SIZE(int);    BASE_TYPE_SIZE(long);    BASE_TYPE_SIZE(long long);    BASE_TYPE_SIZE(float);    BASE_TYPE_SIZE(double);    BASE_TYPE_SIZE(long double);    BASE_TYPE_SIZE(void*);    BASE_TYPE_SIZE(char*);    BASE_TYPE_SIZE(int*);        typedef struct     {    }StructNull;    BASE_TYPE_SIZE(StructNull);    BASE_TYPE_SIZE(StructNull*);}

结果是:

        void :  1 Byte        char :  1 Byte       short :  2 Bytes         int :  4 Bytes        long :  4 Bytes   long long :  8 Bytes       float :  4 Bytes      double :  8 Bytes long double : 12 Bytes       void* :  4 Bytes       char* :  4 Bytes        int* :  4 Bytes  StructNull :  0 Byte StructNull* :  4 Bytes

这些内容不用记住,不同平台是不一样的,使用之前,一定要亲自测试验证下。

这里先解释下“模数”的概念:

每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。

接着看网上流传一个表:

平台

长度/模数

char

short

int

long

float

double

long long

long double

Win-32

长度

1

2

4

4

4

8

8

8

模数

1

2

4

4

4

8

8

8

Linux-32

长度

1

2

4

4

4

8

8

12

模数

1

2

4

4

4

4

4

4

Linux-64

长度

1

2

4

8

4

8

8

16

模数

1

2

4

8

4

8

8

16

本文的的例子我用的是MinGW32的GCC来测试,你猜符合上表的哪一项?

别急,再看一个例子:

    typedef struct     {        int e_int;        double e_double;    }S11;    S11 s11;    STRUCT_E_ADDR_OFFSET(s11, e_int);    STRUCT_E_ADDR_OFFSET(s11, e_double);

结果是:

  s11 size = 16        s11.e_int addr: 0028FF18, offset:  0  s11 size = 16     s11.e_double addr: 0028FF20, offset:  8

很明显,上表没有一项完全对应得上的。简单汇总以下我测试的结果:

长度/模数

char

short

int

long

float

double

long long

long double

长度

1

2

4

4

4

8

8

12

模数

1

2

4

4

4

8

8

8

所以,再强调一下:因为环境的差异,在你参考使用之前,请自行测试一下。

其实,这个模数是可以改变的,可以用预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。

例如

#pragma pack(1)typedef struct {    char e_char;    long double e_ld;}S14;#pragma pack()
想知道结构图元素内存如何对齐,其实非常简单。
其实,你只需知道当前你使用的这个系统的基本类型的sizeof是多少,然后根据这个大小做对齐排布。
例如,本文一开始的例子
    typedef struct     {        int e_int;        char e_char1;        char e_char2;    }S2;
typedef struct { char e_char1; int e_int; char e_char2; }S3;    S2 s2; S3 s3;

32位系统中,它们内存是这么对齐的:

简单解释下:

S2中的元素e_int是按4字节对齐的,其地址位4整数倍,而e_char1和e_char2就按1字节对齐,紧跟其后面就可以了;

而S3中的元素e_char1是按1字节对齐的,放在最前面,而e_int是按4字节对齐的,其地址位4整数倍,所以,只能找到个+4的位置,紧接着e_char2就按1字节对齐,跟其后面就可以了。

那么sizeof(s2)和sizeof(s3)各是多少怎么算?

也很简单,例如这个32位系统,为了提高执行效率,编译器会让数据访问以4字节为单位的,所以S2里有2个字节留空,即sizeof(s2)=8,而sizeof(s3)=12。

是不是很简单呢!

接着,来个复杂一点的:

    typedef struct     {        char e_char1;        short e_short;        char e_char2;        int e_int;        char e_char3;    }S4;    S4 s4;

其内存分布如下:

按上面的方法,也不难理解。e_int是不能从+5位置开始的,因为+5不是int的对齐位置,用int去访问+5位置是效率很低或者有问题的,所以它只能从+8位置开始。
再复杂一点的呢?来看看union和struct结合的例子:
    typedef struct    {        int e_int1;         union        {            char ue_chars[9];             int ue_int;        }u;        double e_double;         int e_int2;     }SU2;    SU2 su2;  
得到:

为什么这样呢?
你这样想,要时刻想着CPU访问数据的效率,如果union里的元素类型不一样,那就以最大长度的那个类型对齐了。
另外,还有结构体套着结构体的情况了:
typedef struct     {        int e_int;        char e_char;    }S1;   typedef struct     {        S1 e_s;        char e_char;    }SS1;
typedef struct { short e_short; char e_char; }S6;
typedef struct { S6 e_s; char e_char;    }SS2;   

得出结果:

得出结论:结构体内的结构体,结构体内的元素并不会和结构体外的元素合并占一个对齐单元。

只要技术上面的对齐方法,这些都不难理解。
如果你非要一些规则的话,我总结成这样:

首先,不推荐记忆这些条条框框的文字,以下内容仅供参考:

  1. 结构体的内存大小,并非其内部元素大小之和;
  2. 结构体变量的起始地址,可以被最大元素基本类型大小或者模数整除;
  3. 结构体的内存对齐,按照其内部最大元素基本类型或者模数大小对齐;
  4. 模数在不同平台值不一样,也可通过#pragma pack(n)方式去改变;
  5. 如果空间地址允许,结构体内部元素会拼凑一起放在同一个对齐空间;
  6. 结构体内有结构体变量元素,其结构体并非展开后再对齐;
  7. union和bitfield变量也遵循结构体内存对齐原则。
其实,这些都没必要去记,多思考多理解就OK了。唯一需要记得是某系统平台下的基本类型的sizeof大小,然后按照对齐原则来就可以了,就是时刻想着CPU要提升数据访问效率的。
更多的案例,很早写在《图文并茂,一文讲透C语言结构体内存对齐》这个文章里面了,感兴趣的小伙伴可以研究下。

里面涉及到很多测试源码,如果想要获取的话,可以关注公众号,回复"struct"即可获得下载链接。


小飞哥玩嵌入式 分享嵌入式开发相关知识,喜欢DIY分享
评论
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 124浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 131浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 76浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 74浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 48浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 83浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦