面试爱问之结构体对齐

小飞哥玩嵌入式 2023-05-25 21:42
C语言结构体对齐问题,是面试必备问题。我参与招聘技术面试的时候,也喜欢问这个技术点。
这不是在面试时要装B,也不是要故意难为一下面试者,而是这个知识点比较基础,但很重要。
网上搜出来的嵌入式或C语言笔试题,很多都有这种题目,连《程序员面试宝典》也有讲解这种题目。

结构体对齐知识点考察,俨然成为编程技术岗面试笔试的一种标配。
我以前找工作被问这种题的时候就经常想,结构体对齐这个东西平常很少用,考这东西干嘛?为什么结构体对齐那么重要。
看看这个例子
    typedef struct     {        int e_int;        char e_char1;        char e_char2;    }S2;
typedef struct { char e_char1; int e_int; char e_char2; }S3;    S2 s2; S3 s3;

你觉得这俩结构体所占内存是一样大吗?其实不是!

好像也没什么啊,一不一样大对于C语言程序员有什么所谓!

也许你还还感觉不到,上段代码:

    S2 s2[1024] = {0};    S3 s3[1024] = {0};

对于32位系统,s2的大小为8K,而s3的大小为12K,一放大,就有很明显的区别了。

再举个例子:

unsigned char bytes[10]={0};int* p = (int*)&bytes[3];*p = 0x345678;
你觉得执行上面的代码会发生什么情况?Warining?只是Warning么?!
以前我也没觉得懂得这个结构体对齐或者内存对齐有多重要,直到已经从事了嵌入式开发经验不断积累,才慢慢体会到,这是一种很基础的知识,就因为这个东西不常用,而出现相关的问题是非常致命的,排查起来成本非常高。
有个小伙伴,因为一个内存对齐(结构体对齐相关知识点)问题导致的偶发性Exception问题,折腾了一个多星期。
由于项目接近尾声,出现这种问题,项目经理、老板都操心得不得了。天天不是奶茶水果,就是宵夜,把小伙伴当宝贝来哄,为的就是快速定位这个问题。
然而,他们日以继夜的排查了一个多星期,依然一脸懵逼。
直到让我参与进来支援,我通过仿真方式碰巧捕捉到了这种异常情况。问题的根本原因就是强制类型转换导致的内存对齐问题。篇幅有限,这个故事,以后慢慢细讲。
接下来先看看,结构体对齐的知识点。
结构体对齐,说不难吧,我研究了很多次,都没完全记住;说难吧,理解其原因本质,就易如破竹。
结构体对齐,其实其本质就是内存对齐。
什么以最大元素变量为单位,什么最小公倍数等等法则,通通都是让你死记硬背的,没两天就忘了。
为什么要结构体对齐,原因就是内存要对齐,原因是芯片内存的制造限制,是制造成本约束,是内存读取效率要求。
如果你上学的时候认真学习过微机原理,应该还记得,芯片的地址总线和数据总线这个概念吧。没学过微机原理也没关系,8位单片机、16位单片机和32位单片机等等,这些总得听说过吧。

这个8位、16位和32位等,指的是单片机一次处理数据的宽度,也就和数据总线相关了。
细心的小伙伴会知道,16位单片机的通用寄存器例如R0的长度是2个字节的,而32位的是4字节的。
也就是说16位单片机,单指令一次访问数据是2个字节,而32位单片机可以访问4字节。
为了提高MCU的运行效率,内存设计上,进来适应这个CPU的总线访问。以32位MCU为例,其内存一般都是每4字节(32位)为一个小单元,有时候也叫1个字(Word)。
注意:字节,这个概念长度是固定的,就是8bit;而,却不是固定的,跟CPU或系统位数有关,有时候还会出现字、双字这些概念,举例说明下:
32位计算机:1字=32位=4字节,64位计算机:1字=64位=8字节
所以,对于C语言的变量的存放和访问,都会按着这单位来,例如32位系统中,char是一个字节的,就按Byte来,int是4字节的,那么按Word来。
为什么要这样呢?
如果,一块内存在地址上随便放的,CPU有可能就会用到多条指令来访问,这就会降低效率。
对于32位系统,如下图的A可能需要2条指令访问,而B只需1条指令。

不仅单片机这样,我们常用的计算机也是这样,你看内存条,长这样的:

你以为,通过总线的方式可以随便访问一个地址吗

但是,为了提高访问速度,其设计是这样的:

这样,这个地址就必须是8的倍数。
如果你要从不对齐的内存读取数据,虽然在C语言编程上感觉不到这样的操作有什么区别,但CPU是分开多次读出来的。
这就是内存对齐了。int8(即char)是以1字节对齐,int16是以2字节对齐,而int32是以4字节对齐的,等等。
(以上案例看不懂?推荐去B站看这个视频:【Golang】这个内存对齐呀!?_哔哩哔哩_bilibili,我上面的图也是参考这个视频的。)
世界上CPU平台、系统那么多,我们怎么知道哪个类型到底有多长,是以哪种长度对齐的?

不要瞎猜,直接上代码。每个平台都不一样,请读者自行测试,以下我是基于Windows上MinGW的GCC测的。

#define BASE_TYPE_SIZE(t)   printf("%12s : %2d Byte%s\n", #t, sizeof(t), (sizeof(t))>1?"s":"")void base_type_size(void){    BASE_TYPE_SIZE(void);    BASE_TYPE_SIZE(char);    BASE_TYPE_SIZE(short);    BASE_TYPE_SIZE(int);    BASE_TYPE_SIZE(long);    BASE_TYPE_SIZE(long long);    BASE_TYPE_SIZE(float);    BASE_TYPE_SIZE(double);    BASE_TYPE_SIZE(long double);    BASE_TYPE_SIZE(void*);    BASE_TYPE_SIZE(char*);    BASE_TYPE_SIZE(int*);        typedef struct     {    }StructNull;    BASE_TYPE_SIZE(StructNull);    BASE_TYPE_SIZE(StructNull*);}

结果是:

        void :  1 Byte        char :  1 Byte       short :  2 Bytes         int :  4 Bytes        long :  4 Bytes   long long :  8 Bytes       float :  4 Bytes      double :  8 Bytes long double : 12 Bytes       void* :  4 Bytes       char* :  4 Bytes        int* :  4 Bytes  StructNull :  0 Byte StructNull* :  4 Bytes

这些内容不用记住,不同平台是不一样的,使用之前,一定要亲自测试验证下。

这里先解释下“模数”的概念:

每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。

接着看网上流传一个表:

平台

长度/模数

char

short

int

long

float

double

long long

long double

Win-32

长度

1

2

4

4

4

8

8

8

模数

1

2

4

4

4

8

8

8

Linux-32

长度

1

2

4

4

4

8

8

12

模数

1

2

4

4

4

4

4

4

Linux-64

长度

1

2

4

8

4

8

8

16

模数

1

2

4

8

4

8

8

16

本文的的例子我用的是MinGW32的GCC来测试,你猜符合上表的哪一项?

别急,再看一个例子:

    typedef struct     {        int e_int;        double e_double;    }S11;    S11 s11;    STRUCT_E_ADDR_OFFSET(s11, e_int);    STRUCT_E_ADDR_OFFSET(s11, e_double);

结果是:

  s11 size = 16        s11.e_int addr: 0028FF18, offset:  0  s11 size = 16     s11.e_double addr: 0028FF20, offset:  8

很明显,上表没有一项完全对应得上的。简单汇总以下我测试的结果:

长度/模数

char

short

int

long

float

double

long long

long double

长度

1

2

4

4

4

8

8

12

模数

1

2

4

4

4

8

8

8

所以,再强调一下:因为环境的差异,在你参考使用之前,请自行测试一下。

其实,这个模数是可以改变的,可以用预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。

例如

#pragma pack(1)typedef struct {    char e_char;    long double e_ld;}S14;#pragma pack()
想知道结构图元素内存如何对齐,其实非常简单。
其实,你只需知道当前你使用的这个系统的基本类型的sizeof是多少,然后根据这个大小做对齐排布。
例如,本文一开始的例子
    typedef struct     {        int e_int;        char e_char1;        char e_char2;    }S2;
typedef struct { char e_char1; int e_int; char e_char2; }S3;    S2 s2; S3 s3;

32位系统中,它们内存是这么对齐的:

简单解释下:

S2中的元素e_int是按4字节对齐的,其地址位4整数倍,而e_char1和e_char2就按1字节对齐,紧跟其后面就可以了;

而S3中的元素e_char1是按1字节对齐的,放在最前面,而e_int是按4字节对齐的,其地址位4整数倍,所以,只能找到个+4的位置,紧接着e_char2就按1字节对齐,跟其后面就可以了。

那么sizeof(s2)和sizeof(s3)各是多少怎么算?

也很简单,例如这个32位系统,为了提高执行效率,编译器会让数据访问以4字节为单位的,所以S2里有2个字节留空,即sizeof(s2)=8,而sizeof(s3)=12。

是不是很简单呢!

接着,来个复杂一点的:

    typedef struct     {        char e_char1;        short e_short;        char e_char2;        int e_int;        char e_char3;    }S4;    S4 s4;

其内存分布如下:

按上面的方法,也不难理解。e_int是不能从+5位置开始的,因为+5不是int的对齐位置,用int去访问+5位置是效率很低或者有问题的,所以它只能从+8位置开始。
再复杂一点的呢?来看看union和struct结合的例子:
    typedef struct    {        int e_int1;         union        {            char ue_chars[9];             int ue_int;        }u;        double e_double;         int e_int2;     }SU2;    SU2 su2;  
得到:

为什么这样呢?
你这样想,要时刻想着CPU访问数据的效率,如果union里的元素类型不一样,那就以最大长度的那个类型对齐了。
另外,还有结构体套着结构体的情况了:
typedef struct     {        int e_int;        char e_char;    }S1;   typedef struct     {        S1 e_s;        char e_char;    }SS1;
typedef struct { short e_short; char e_char; }S6;
typedef struct { S6 e_s; char e_char;    }SS2;   

得出结果:

得出结论:结构体内的结构体,结构体内的元素并不会和结构体外的元素合并占一个对齐单元。

只要技术上面的对齐方法,这些都不难理解。
如果你非要一些规则的话,我总结成这样:

首先,不推荐记忆这些条条框框的文字,以下内容仅供参考:

  1. 结构体的内存大小,并非其内部元素大小之和;
  2. 结构体变量的起始地址,可以被最大元素基本类型大小或者模数整除;
  3. 结构体的内存对齐,按照其内部最大元素基本类型或者模数大小对齐;
  4. 模数在不同平台值不一样,也可通过#pragma pack(n)方式去改变;
  5. 如果空间地址允许,结构体内部元素会拼凑一起放在同一个对齐空间;
  6. 结构体内有结构体变量元素,其结构体并非展开后再对齐;
  7. union和bitfield变量也遵循结构体内存对齐原则。
其实,这些都没必要去记,多思考多理解就OK了。唯一需要记得是某系统平台下的基本类型的sizeof大小,然后按照对齐原则来就可以了,就是时刻想着CPU要提升数据访问效率的。
更多的案例,很早写在《图文并茂,一文讲透C语言结构体内存对齐》这个文章里面了,感兴趣的小伙伴可以研究下。

里面涉及到很多测试源码,如果想要获取的话,可以关注公众号,回复"struct"即可获得下载链接。


小飞哥玩嵌入式 分享嵌入式开发相关知识,喜欢DIY分享
评论 (0)
  • 最近,途虎养车发布的2024年财报数据,可谓相当吸睛。全年营收达到147.59亿元,同比增长8.5%,这个数字直观地展现了途虎在市场上的强大吸金能力,在行业里稳稳占据前列。利润方面同样出色,毛利37.46亿元,毛利率提升0.7个百分点至25.4%;经调整净利润6.24亿元,同比增长 29.7%,经营利润同比更是增长104%至3.31亿元,盈利能力显著增强,这样的利润增长幅度,在同行业中十分亮眼。在用户规模上,途虎养车同样成绩斐然。累计注册用户近1.4亿,同比增长20.4%,交易用户数达2410万
    用户1742991715177 2025-04-24 19:12 31浏览
  •   无人机结构仿真与部件拆解分析系统平台解析   北京华盛恒辉无人机结构仿真与部件拆解分析系统无人机技术快速发展的当下,结构仿真与部件拆解分析系统平台成为无人机研发测试的核心工具,在优化设计、提升性能、降低成本等方面发挥关键作用。以下从功能、架构、应用、优势及趋势展开解析。   应用案例   目前,已有多个无人机结构仿真与部件拆解分析系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机结构仿真与部件拆解分析系统。这些成功案例为无人机结构仿真与部件拆解分析系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-23 15:00 218浏览
  •   电磁频谱数据综合管理平台系统解析   一、系统定义与目标   北京华盛恒辉电磁频谱数据综合管理平台融合无线传感器、软件定义电台等前沿技术,是实现无线电频谱资源全流程管理的复杂系统。其核心目标包括:优化频谱资源配置,满足多元通信需求;运用动态管理与频谱共享技术,提升资源利用效率;强化频谱安全监管,杜绝非法占用与干扰;为电子战提供频谱监测分析支持,辅助作战决策。   应用案例   目前,已有多个电磁频谱数据综合管理平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁频谱数
    华盛恒辉l58ll334744 2025-04-23 16:27 212浏览
  •   有效样本分析决策系统平台全面解析   一、引言   北京华盛恒辉有效样本分析决策系统在当今数据驱动的时代,企业、科研机构等面临着海量数据的处理与分析挑战。有效样本分析决策系统平台应运而生,它通过对样本数据的精准分析,为决策提供有力支持,成为提升决策质量和效率的关键工具。   应用案例   目前,已有多个有效样本分析决策系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润有效样本分析决策系统。这些成功案例为有效样本分析决策系统的推广和应用提供了有力支持。   二、平台概述
    华盛恒辉l58ll334744 2025-04-24 11:13 114浏览
  •   通用装备论证与评估系统平台解析   北京华盛恒辉通用装备论证与评估系统平台是服务军事装备全生命周期管理的综合性信息化平台,通过科学化、系统化手段,实现装备需求论证、效能分析等核心功能,提升装备建设效益。   应用案例   目前,已有多个通用装备论证与评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润通用装备论证与评估系统。这些成功案例为通用装备论证与评估系统的推广和应用提供了有力支持。   一、系统分层架构   (一)数据层   整合装备性能、作战、试验等多源异
    华盛恒辉l58ll334744 2025-04-24 16:14 137浏览
  • 引言:语音交互的智能化跃迁在全球化与智能化深度融合的今天,语音交互设备的应用场景已从单一提示功能向多语言支持、情感化表达及AI深度交互演进。传统离线语音方案受限于语种单一、存储容量不足等问题,而纯在线方案又依赖网络稳定性,难以满足复杂场景需求。WT3000A离在线TTS方案,通过“本地+云端”双引擎驱动,集成16国语种、7种方言切换、AI大模型对话扩展等创新功能,重新定义语音提示器的边界,为智能硬件开发者提供更灵活、更具竞争力的语音交互解决方案。一、方案核心亮点离在线双模融合,场景全覆盖离线模式
    广州唯创电子 2025-04-25 09:14 33浏览
  • 随着轻薄笔记本的普及,再加上电竞玩家对于高画质音视频体验的需求日益高涨,如何让轻薄笔记本在兼顾轻便携带性的同时,还能提供足以支持3A(AAA/Triple-A game)大作的良好运算性能,便成为各家品牌急欲突破的共同难题。然而,对于主打轻巧便携的轻薄笔记本而言,若要内置独立显卡,势必要先突破空间受限的瓶颈,同时还需解决散热问题,确实难以兼顾两全!对此,“Thunderbolt”与“OCuLink”这两项技术应运而生。用户可以通过这两种传输接口,再搭配外接显卡盒(eGPU)及高性能显卡(如NVI
    百佳泰测试实验室 2025-04-24 17:56 30浏览
  •   高海拔区域勤务与装备保障调度系统平台解析   北京华盛恒辉高海拔区域勤务与装备保障调度系统平台专为高海拔特殊地理环境打造,致力于攻克装备适应、人员健康保障、物资运输及应急响应等难题。以下从核心功能、技术特点、应用场景及发展趋势展开全面解读。   应用案例   目前,已有多个高海拔区域勤务与装备保障调度系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润高海拔区域勤务与装备保障调度系统。这些成功案例为高海拔区域勤务与装备保障调度系统的推广和应用提供了有力支持。   一、核心
    华盛恒辉l58ll334744 2025-04-24 10:13 116浏览
  • 为通过金融手段积极推进全球绿色发展,国际金融论坛(IFF)于2020年创立了“IFF全球绿色金融奖”,旨在对全球绿色金融领域取得突出成绩的机构及创新性的解决方案进行表彰和奖励。该奖项依托IFF“高层次、高水平、国际化”一流智库资源优势,积极促进绿色金融领域的国际交流合作和创新实践,助力联合国可持续发展目标的实现。“IFF全球绿色金融奖”重点关注和鼓励那些促进经济增长模式转型、防治环境污染、应对气候变化,以及致力于提高能效水平、强化节能减排实效的绿色金融创新解决方案。该奖项面向全球,是对政策创新、
    华尔街科技眼 2025-04-24 20:43 18浏览
  • 2025-4-25全球信息报告出版商Global Info Research(环洋市场咨询)发布了【2025年全球市场高介电常数材料总体规模、主要生产商、主要地区、产品和应用细分研究报告】,报告主要调研全球高介电常数材料总体规模、主要地区规模、主要生产商规模和份额、产品分类规模、下游主要应用规模以及未来发展前景预测。统计维度包括销量、价格、收入,和市场份额。同时也重点分析全球市场主要厂商(品牌)产品特点、产品规格、价格、销量、销售收入及发展动态。历史数据为2020至2024年,预测数据为2025
    用户1745398400862 2025-04-25 08:48 35浏览
  •   海上训练与保障调度指挥平台系统解析   北京华盛恒辉海上训练与保障调度指挥平台系统是现代海上作战训练的核心枢纽,融合信息技术、GIS、大数据及 AI 等前沿技术,旨在实现海上训练高效组织、作战保障科学决策。以下从架构功能、应用场景、系统优势及发展挑战展开解读。   应用案例   目前,已有多个海上训练与保障调度指挥平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润海上训练与保障调度指挥平台。这些成功案例为海上训练与保障调度指挥平台的推广和应用提供了有力支持。   一
    华盛恒辉l58ll334744 2025-04-24 15:26 130浏览
  •   陆地装备体系论证与评估综合平台系统解析   北京华盛恒辉陆地装备体系论证与评估综合平台系统是契合现代军事需求而生的专业系统,借助科学化、智能化手段,实现对陆地装备体系的全方位论证与评估,为军事决策和装备发展提供关键支撑。以下从功能、技术、应用及展望展开分析。   应用案例   目前,已有多个陆地装备体系论证与评估综合平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润陆地装备体系论证与评估综合平台。这些成功案例为陆地装备体系论证与评估综合平台的推广和应用提供了有力支持。
    华盛恒辉l58ll334744 2025-04-24 10:53 125浏览
  • 引言在智能语音技术飞速发展的今天,语音交互已成为消费电子、智能家居、工业控制等领域的标配功能。传统的ISD系列录音芯片虽应用广泛,但其高成本与功能局限性逐渐难以满足市场对高性价比、高灵活性的需求。推出的WT2000P录音语音芯片,凭借其卓越性能、低功耗设计及高度可定制化特性,成为ISD系列芯片的理想替代方案,助力开发者突破产品创新瓶颈。一、WT2000P产品概述WT2000P是一款专为嵌入式语音场景设计的多功能录音芯片,采用ESOP8封装,体积小巧(尺寸仅4.9mm×3.9mm),集成度高,支持
    广州唯创电子 2025-04-25 08:44 24浏览
  •   后勤实验仿真系统平台深度解析   北京华盛恒辉后勤实验仿真系统平台依托计算机仿真技术,是对后勤保障全流程进行模拟、分析与优化的综合性工具。通过搭建虚拟场景,模拟资源调配、物资运输等环节,为后勤决策提供数据支撑,广泛应用于军事、应急管理等领域。   应用案例   目前,已有多个后勤实验仿真系统平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润后勤实验仿真系统平台。这些成功案例为后勤实验仿真系统平台的推广和应用提供了有力支持。   一、核心功能   (一)后勤资源模拟
    华盛恒辉l58ll334744 2025-04-23 15:39 188浏览
  •   航空兵训练与战术对抗仿真平台系统解析   北京华盛恒辉航空兵训练与战术对抗仿真平台系统是现代军事训练的关键工具,借助计算机技术构建虚拟战场,支持多兵种协同作战模拟,为军事决策、训练及装备研发提供科学依据。   应用案例   目前,已有多个航空兵训练与战术对抗仿真平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润航空兵训练与战术对抗仿真平台。这些成功案例为航空兵训练与战术对抗仿真平台的推广和应用提供了有力支持。   一、系统架构与核心功能   系统由模拟器、计算机兵力生
    华盛恒辉l58ll334744 2025-04-24 16:34 148浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦