电子工程之嵌入式系统

传感器技术 2023-05-24 07:01

随着我国传统产业结构升级的加速,人们对设备越来越高的应用需求已无法满足当前和未来高性能的应用与发展需求。同时,激烈的市场竞争和技术竞争,要求产品的开发周期越来越短,显然,嵌入式系统的软、硬件技术和开发手段,正日益受到重视,成为各领域技术创新的重要基础。






嵌入式系统





根据IEEE(国际电气和电子工程师协会)的定义,嵌入式系统是“控制、监视或者辅助设备、机器和车间运行的装置”。


目前国内一个普遍被认同的定义是:以应用为中心、以计算机技术为基础,软件硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。


与通用计算机系统的不同:嵌入式系统是不同于常见计算机系统的一种计算机系统,它不以独立设备的物理形态出现,嵌入式系统的部件根据主体设备及其应用的需要,嵌入在主体设备内部,发挥着运算、处理、存储及控制的作用,是“用于控制、监视或者辅助操作机器和设备的装置”。


可以这样认为,嵌入式系统是一种专用的计算机系统,作为装置或设备的一部分。嵌入式系统一般由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户应用程序4个部分组成。“嵌入性”、“专用性”与“计算机系统”是嵌入式系统的三个基本要素,对象系统则是指嵌入式系统所嵌入的宿主系统。


嵌入式系统的组成

嵌入式系统通常由包含有嵌入式处理器、嵌入式操作系统、应用软件和外围设备接口的嵌入式计算机系统和执行装置(被控对象)组成。嵌入式计算机系统是整个嵌入式系统的核心,可以分为硬件层、中间层、系统软件层和应用软件层。执行装置接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。



1.嵌入式计算机系统的硬件层

硬件层中包含嵌入式微处理器、存储器(SDRAM、ROM、Flash等)、通用设备接口和I/O接口(A/D、D/A、I/O等)。硬件层通常是一个以嵌入式处理器为中心的,包含有电源电路、时钟电路和存储器电路的电路模块,其中操作系统和应用程序都固化在模块的ROM中。


1.1 嵌入式微处理器



嵌入式微处理器是嵌入式系统硬件层的核心,嵌入式微处理器将通用CPU中许多由板卡完成的任务集成到芯片内部,从而有利于系统设计趋于小型化、高效率和高可靠性。嵌入式微处理器大多工作在为特定用户群所专门设计的系统中。n嵌入式微处理器的体系结构可以采用冯·诺依曼体系结构或哈佛体系结构,指令系统可以选用精简指令系统(Reduced Instruction SetComputer,RISC)和复杂指令集系统CISC(Complex Instruction SetComputer, CISC)。


嵌入式微处理器有各种不同的体系,目前全世界嵌入式微处理器已经超过1000多种,体系结构有30多个系列,其中主流的体系有ARM、MIPS、PowerPC、X86等。即使在同一体系中,也可以具有不同的时钟频率、数据总线宽度、接口和外设。目前没有一种嵌入式微处理器可以主导市场,嵌入式微处理器的选择是根据具体的应用而决定的。


1.2 存储器

嵌入式系统的存储器包含Cache、主存储器和辅助存储器,用来存放和执行代码。



① Cache是一种位于主存储器和嵌入式微处理器内核之间的快速存储器阵列,存放的是最近一段时间微处理器使用最多的程序代码和数据。


Cache一般集成在嵌入式微处理器内,可分为数据Cache、指令Cache或混合Cache,Cache的存储容量大小依不同处理器而定。


② 主存储器用来存放系统和用户的程序及数据,是嵌入式微处理器能直接访问的存储器。主存储器包含有ROM和RAM,可以位于微处理器的内部或外部。常用的ROM类存储器有NOR Flash、EPROM和PROM等,RAM类存储器有SRAM、DRAM和SDRAM等,容量为256KB~1GB。


③ 辅助存储器通常指硬盘、NAND Flash、CF卡、MMC和SD卡等,用来存放大数据量的程序代码或信息,一般容量较大,但读取速度与主存相比要慢一些。


1.3 通用设备接口和I/O接口

嵌入式系统通常具有与外界交互所需要的通用设备接口,如GPIO、 A/D(模/数转换接口)、D/A(数/模转换接口)、RS-232接口(串行通信接口)、Ethernet(以太网接口)、USB(通用串行总线接口)、音频接口、VGA视频输出接口、I2C(现场总线)、SPI(串行外围设备接口)和IrDA(红外线接口)等。


2.中间层

中间层也称为硬件抽象层(Hardware Abstract Layer,HAL)或板级支持包(Board Support Package,BSP),位于硬件层和软件层之间,将系统上层软件与底层硬件分离开来。


BSP作为上层软件与硬件平台之间的接口,需要为操作系统提供操作和控制具体硬件的方法。不同的操作系统具有各自的软件层次结构,BSP需要为不同的操作系统提供特定的硬件接口形式。BSP使上层软件开发人员无需关心底层硬件的具体情况,根据BSP层提供的接口即可进行开发。


BSP是一个介于操作系统和底层硬件之间的软件层次,包括了系统中大部分与硬件联系紧密的软件模块。BSP一般包含相关底层硬件的初始化、数据的输入/输出操作和硬件设备的配置等功能。


2.1 嵌入式系统硬件初始化

系统初始化过程按照自底向上、从硬件到软件的次序依次可以分为片级初始化、板级初始化和系统级初始化3个主要环节。


① 片级初始化是一个纯硬件的初始化过程,包括设置嵌入式微处理器的核心寄存器和控制寄存器、嵌入式微处理器核心工作模式和嵌入式微处理器的局部总线模式等。


② 板级初始化是一个同时包含软硬件两部分在内的初始化过程,完成嵌入式微处理器以外的其他硬件设备的初始化,设置某些软件的数据结构和参数,为随后的系统级初始化和应用程序的运行建立硬件和软件环境。

 

③ 系统级初始化主要进行操作系统的初始化。BSP将对嵌入式微处理器的控制权转交给嵌入式操作系统,由操作系统完成余下的初始化操作。最后,操作系统创建应用程序环境,并将控制权交给应用程序的入口。


2.2 硬件相关的设备驱动程序

nnBSP中包含硬件相关的设备驱动程序,但是这些设备驱动程序通常不直接由BSP使用,而是在系统初始化过程中由BSP将他们与操作系统中通用的设备驱动程序关联起来,并在随后的应用中由通用的设备驱动程序调用,实现对硬件设备的操作。


3.系统软件层

系统软件层通常包含有嵌入式操作系统(Embedded Operating System,EOS) 、文件系统、网络系统及通用组件模块组成。


3.1 嵌入式操作系统

EOS除具备了一般操作系统最基本的任务调度、同步机制、中断处理、文件处理等功能外,还具有如下特点:


  • 强实时性;

  • 支持开放性和可伸缩性的体系结构,具有可裁减性;

  • 提供统一的设备驱动接口;

  • 支持TCP/IP协议及其他协议,提供TCP/UDP/IP/PPP协议支持及统一的MAC访问层接口,提供强大的网络功能;

  • 嵌入式操作系统的用户接口通过系统的调用命令向用户程序提供服务;

  • 嵌入式系统一旦开始运行就不需要用户过多的干预;

  • 嵌入式操作系统和应用软件被固化在嵌入式系统计算机的ROM中;

  • 具有良好的硬件适应性(可移植性)。


3.2 文件系统

嵌入式文件系统主要提供文件存储、检索和更新等功能。嵌入式文件系统通常支持FAT32、JFFS2、YAFFS等几种标准的文件系统,一些嵌入式文件系统还支持自定义的实时文件系统。


嵌入式文件系统以系统调用和命令方式提供文件的各种操作,如设置、修改对文件和目录的存取权限,提供建立、修改、改变和删除目录等服务,提供创建、打开、读写、关闭和撤销文件等服务。


4.应用软件层

应用软件层用来实现对被控对象的控制功能,由所开发的应用程序组成,面向被控对象和用户。


嵌入式实时操作系统


RTOS与通用计算机系统不同,要求系统中的任务不但执行结果要正确,而且必须在一定的时间约束(Deadline)内完成。在RTOS中,一个逻辑上正确的计算结果,若其产生的时间晚于某个规定的时间,那么也认为系统的行为是不正确的。



1.实时系统RTOS的定义

RTOS是指能够在指定或者确定的时间内完成系统功能和对外部或内部、同步或异步时间做出响应的系统,系统能够处理和存储控制系统所需要的大量数据。RTOS的正确性不仅依赖于系统计算的逻辑结果,还依赖于产生这个结果的时间。


2.RTOS的特点


2.1 约束性

RTOS任务的约束包括时间约束、资源约束、执行顺序约束和性能约束。


RTOS的任务具有时间约束性。时间约束性可分为“硬实时”和“软实时”。 


资源约束是指多个实时任务共享有限的资源时,必须按照一定的资源访问控制协议进行同步,以避免死锁和高优先级任务被低优先级任务堵塞的时间(即优先级倒置时间)不可预测。


性能约束是指必须满足如可靠性、可用性、可预测性、服务质量(Quality of Service,QoS)等性能指标。


2.2 可预测性

可预测性是指RTOS完成实时任务所需要的执行时间应是可知的。


2.3 可靠性

大多数RTOS要求有较高的可靠性,要求系统在最坏情况下都能正常工作或避免损失。可靠性是RTOS的重要性能指标。


n(4)交互性n外部环境是RTOS不可缺少的一个组成部分,外部环境往往是被控子系统,两者相互作用构成完整的实时系统。


3.RTOS调度

给定一组实时任务和系统资源,确定每个任务何时何地执行的整个过程就是调度。而RTOS中调度的目的则是要尽可能地保证每个任务满足它们的时间约束,及时对外部请求做出响应。 


4.RTOS分类

RTOS主要分为强实时(Hard Real-Time)系统和弱实时(Soft Real-Time)系统两类。强实时系统应用在航空航天、军事、核工业等领域中,弱实时系统如视频点播系统、信息采集与检索系统等。 


嵌入式微处理器体系结构


1.冯·诺依曼体系结构与哈佛结构


1.1 冯·诺依曼(Von Neumann)结构

冯·诺依曼结构的计算机由CPU和存储器构成,其程序和数据共用一个存储空间,程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置;采用单一的地址及数据总线,程序指令和数据的宽度相同。程序计数器(PC)是CPU内部指示指令和数据的存储位置的寄存器。


CPU通过程序计数器提供的地址信息,对存储器进行寻址,找到所需要的指令或数据,然后对指令进行译码,最后执行指令规定的操作。处理器执行指令时,先从储存器中取出指令解码,再取操作数执行运算,即使单条指令也要耗费几个甚至几十个周期,在高速运算时,在传输通道上会出现瓶颈效应。


使用冯.诺依曼结构的CPU和微控制器有Intel公司的8086系列及其他CPU,ARM公司的ARM7、MIPS公司的MIPS处理器等。


1.2 哈佛(Harvard)结构

哈佛结构的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编址、独立访问。系统中具有程序的数据总线与地址总线,数据的数据总线与地址总线。


这种分离的程序总线和数据总线可允许在一个机器周期内同时获取指令字(来自程序存储器)和操作数(来自数据存储器),从而提高执行速度,提高数据的吞吐率。又由于程序和数据存储器在两个分开的物理空间中,因此取指和执行能完全重叠,具有较高的执行效率。


目前使用哈佛结构的CPU和微控制器品种有很多,有摩托罗拉公司的MC68系列、Zilog公司的Z8系列、ATMEL公司的AVR系列和ARM公司的ARM9、ARM10和ARM11等。


2 . 精简指令集计算机

早期的计算机采用复杂指令集计算机(Complex Instruction Set Computer,CISC)体系。在CISC中,为了支持目标程序的优化,支持高级语言和编译程序,增加了许多复杂的指令,控制逻辑极不规整,给VLSI工艺造成很大困难。


精简指令集计算机(Reduced Instruction Set Computer,RISC)体系结构是在CISC的基础上产生并发展起来的,RISC的着眼点不是简单地放在简化指令系统上,而是通过简化指令系统使计算机的结构更加简单合理,从而提高运算效率。 


采用Load/Store指令访问存储器,其余指令的操作都在寄存器之间进行;增加CPU中通用寄存器数量,算术逻辑运算指令的操作数都在通用寄存器中存取;大部分指令控制在一个或小于一个机器周期内完成;以硬布线控制逻辑为主,不用或少用微码控制;采用高级语言编程,重视编译优化工作,以减少程序执行时间。


3 . 流水线技术

流水线技术应用于计算机系统结构的各个方面, 是将一个重复的时序分解成若干个子过程,而每一个子过程都可有效地在其专用功能段上与其他子过程同时执行。实现子过程的功能所需时间尽可能相等。形成流水处理,需要一段准备时间。指令流发生不能顺序执行时,会使流水线过程中断,再形成流水线过程则需要时间。


4 . 信息存储的字节顺序


4.1 大端和小端存储法 

对于一个多字节类型的数据,在存储器中有两种存放方法。n低字节数据存放在内存低地址处,高字节数据存放在内存高地址处,称为小端字节顺序存储法;


高字节数据存放在内存低地址处,低字节数据存放在内存高地址处,称为大端字节顺序存储法。


4.2 可移植性问题

当在不同存储顺序的微处理器间进行程序移植时,要特别注意存储模式的影响。把从软件得到的二进制数据写成一般的数据格式往往会涉及到存储顺序的问题。


4.3 通信中的存储顺序问题

在网络通信中,Internet协议(即IP协议)定义了标准的网络字节顺序。该字节顺序被用于所有设计使用在IP协议上的数据包、高级协议和文件格式上。n很多网络设备也存在存储顺序问题:即字节中的位采用大端法(最重要的位优先)或小端法(最不重要的位优先)发送。这取决于OSI模型最底层的数据链路层。


4.4 数据格式的存储顺序

 

嵌入式处理器的类型


1 . 嵌入式微控制器(MCU)

又称为单片机,芯片内部集成ROM、EPROM、RAM、总线、总线逻辑、定时/计数器、看门狗、I/O、串行口、脉宽调制输出(PWM)、A/D、D/A、Flash、EEPROM等各种必要功能和外设。


嵌入式微控制器具有单片化、体积小、功耗和成本低,可靠性高等特点,约占嵌入式系统市场份额的70%。



2 . 嵌入式微处理器(MPU)

由通用计算机中的CPU发展而来,嵌入式微处理器只保留和嵌入式应用紧密相关的功能硬件,去除其他的冗余功能部分,以最低的功耗和资源实现嵌入式应用的特殊要求。



3 . 嵌入式DSP

嵌入式DSP是专门用于信号处理方面的处理器,其在系统结构和指令算法方面进行了特殊设计,具有很高的编译效率和指令执行速度。 



4 . 嵌入式片上系统SoC

SoC,System onchip,或者 System on a chip。基本定义是:以知识产权核为设计基础,在单个芯片上集成处理器、存储器、各种接口等部件,组成一个部分完整的计算机系统,可以完成特定的应用功能。


目前,大多数32位的嵌入式处理器芯片都是SoC。嵌入式SoC是追求产品系统最大包容的集成器件。绝大多数系统构件都在一个系统芯片内部。


5 . 多核处理器

将两个或多个CPU核封装在一个芯片内部,可节省大量的晶体管和封装成本,同时还能显著提高处理器的性能。实现两个或多个内核协调工作.


嵌入式系统的发展史


1 . 以单芯片为核心的可编程控制器形式的系统。一般没有操作系统的支持,通过汇编语言直接控制。


二十世纪七十年代1971年11月,世界上第一片微处理器Intel4004,嵌入式应用发展最重要的里程碑。


2 . 以嵌入式CPU为基础,以简单操作系统为核心的嵌入式系统。

有简单操作系统的支持,但通用性较弱。


二十世纪八十年代,出现了单片机–Intel进一步完善了8048,在它的基础上研制成功了8051单片机–其后发展的DSP 产品更快地提升了嵌入式系统的技术水平。


1981年,第1个商业嵌入式实时内核(VTRX32),随后,出现了一些嵌入式操作系统。


3 . 以嵌入式操作系统为标志的嵌入式系统。

兼容性佳。


二十世纪九十年代至今。硬件方面,尤其是芯片方面的发展表现出三个特点:


软件方面, 嵌入式操作系统出现了进一步的分化,诞生了一些嵌入式操作系统家族。


跨平台的软件开发技术从通用计算机上延展到嵌入式设备上


4 . 以Internet为标志的嵌入式系统。

与Internet相结合。


嵌入式控制器的应用几乎无处不在:移动电话、家用电器、汽车……无不有它的踪影。嵌入控制器因其体积小、可靠性高、功能强、灵活方便等许多优点,其应用已深入到工业、农业、教育、国防、科研以及日常生活等各个领域,对各行各业的技术改造、产品更新换代、加速自动化化进程、提高生产率等方面起到了极其重要的推动作用。从上世纪90年代开始,嵌入式技术已全面展开,成为通信产品和消费类产品的共同发展方向,在通信领域、广播电视领等得到广泛应用。个人领域嵌入式产品主要是个人商用,作为个人移动的数据处理和通讯软件得到普及。嵌入式系统技术发展的空间是无比广。

- END -

   

免责声明:本文版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。 

  

 

为您发布产品,请点击“阅读原文”

 

传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论 (0)
  • 引言:小型化趋势下的语音芯片需求随着消费电子、物联网及便携式设备的快速发展,产品设计对芯片的小型化、高集成度和低功耗提出了更高要求。厂家凭借其创新的QFN封装技术,推出WTV系列(如WTV380)及WT2003H系列语音芯片,以超小体积、高性能和成本优势,为紧凑型设备提供理想解决方案。产品核心亮点1. QFN封装技术赋能超小体积极致尺寸:WTV380采用QFN32封装,尺寸仅4×4毫米,WT2003H系列同样基于QFN工艺,可满足智能穿戴、微型传感器等对空间严苛的场景需求。高密度集成:QFN封装
    广州唯创电子 2025-04-07 08:47 79浏览
  • 文/Leon编辑/cc孙聪颖‍转手绢、跳舞、骑车、后空翻,就在宇树、智元等独角兽企业率领“机器人大军”入侵短视频时,却有资本和科技大佬向此产业泼了一盆冷水。金沙江创投管理合伙人朱啸虎近日突然对人形机器人发难,他表示“最近几个月正在批量退出人形机器人公司”。“只是买回去做研究的,或者买回去做展示的,这种都不是我们意义上的商业化,谁会花十几万买一个机器人去干这些活?”朱啸虎吐槽。不过,朱啸虎的观点很快就遭到驳斥,众擎机器人的创始人、董事长赵同阳回怼道:“(朱啸虎)甚至问出了人形机器人在这个阶段有什么
    华尔街科技眼 2025-04-07 19:24 51浏览
  •     在研究Corona现象时发现:临界电压与介电材料表面的清洁程度有关。表面越清洁的介电材料,临界电压越高;表面污染物越多的地方,越容易“爬电”。关于Corona现象,另见基础理论第007篇。    这里说的“污染物”,定义为——可能影响介电强度或表面电阻率的固体、液体或气体(电离气体)的任何情况。    IEC 60664-1 (对应GB/T 16935.1-2023) 定义了 Pollution Degree,中文术语是“污染等
    电子知识打边炉 2025-04-07 22:06 33浏览
  • 引言:POPO声的成因与影响在语音芯片应用中,WT588F08A作为一款支持DAC+功放输出的高集成方案,常因电路设计或信号处理不当,在音频播放结束后出现POPO声(瞬态噪声)。这种噪声不仅影响用户体验,还可能暴露电路设计缺陷。本文将基于实际案例,解析POPO声的成因并提供系统化的解决方案。一、POPO声的根源分析1. 功放电路状态切换的瞬态冲击当DAC输出的音频信号突然停止时,功放芯片的输入端若处于高阻态或无信号状态,其内部放大电路会因电源电压突变产生瞬态电流,通过喇叭表现为POPO声。关键因
    广州唯创电子 2025-04-07 09:01 91浏览
  • 在追求环境质量升级与产业效能突破的当下,温湿度控制正成为横跨多个行业领域的核心命题。作为环境参数中的关键指标,温湿度的精准调控不仅承载着人们对舒适人居环境的期待,更深度关联着工业生产、科研实验及仓储物流等场景的运营效率与安全标准。从应用场景上看,智能家居领域要求温湿度系统实现与人体节律的协同调节,半导体洁净车间要求控制温湿度范围及其波动以保障良品率,而现代化仓储物流体系则依赖温湿度的实时监测预防各种产品的腐损与锈化。温湿度传感器作为实现温湿度监测的关键元器件,其重要性正在各行各业中凸显而出。温湿
    华普微HOPERF 2025-04-07 10:05 82浏览
  • 在人工智能技术飞速发展的今天,语音交互正以颠覆性的方式重塑我们的生活体验。WTK6900系列语音识别芯片凭借其离线高性能、抗噪远场识别、毫秒级响应的核心优势,为智能家居领域注入全新活力。以智能风扇为起点,我们开启一场“解放双手”的科技革命,让每一缕凉风都随“声”而至。一、核心技术:精准识别,无惧环境挑战自适应降噪,听懂你的每一句话WTK6900系列芯片搭载前沿信号处理技术,通过自适应降噪算法,可智能过滤环境噪声干扰。无论是家中电视声、户外虫鸣声,还是厨房烹饪的嘈杂声,芯片均能精准提取有效指令,识
    广州唯创电子 2025-04-08 08:40 64浏览
  • 在全球电子产业面临供应链波动、技术迭代和市场需求变化等多重挑战的背景下,安博电子始终秉持“让合作伙伴赢得更多一点”的核心理念,致力于打造稳健、高效、可持续的全球供应链体系。依托覆盖供应商管理、品质检测、智能交付的全链路品控体系,安博电子不仅能确保电子元器件的高可靠性与一致性,更以高透明的供应链管理模式,助力客户降低风险、提升运营效率,推动行业标准升级,与全球合作伙伴共同塑造更具前瞻性的产业生态。动态优选机制:构建纯净供应链生态安博电子将供应商管理视为供应链安全的根基。打造动态优选管控体系,以严格
    电子资讯报 2025-04-07 17:06 41浏览
  • 医疗影像设备(如CT、MRI、超声诊断仪等)对PCB的精度、可靠性和信号完整性要求极高。这类设备需要处理微伏级信号、高频数据传输,同时需通过严格的EMC/EMI测试。制造此类PCB需从材料选择、层叠设计、工艺控制等多维度优化。以下是关键技术与经验分享。 1. 材料选择:高频与生物兼容性优先医疗影像设备PCB常采用 Rogers RO4000系列 或 Isola FR4高速材料,以降低介电损耗并保证信号稳定性。例如,捷多邦在客户案例中曾为某超声探头厂商推荐 Rogers RO4350B
    捷多邦 2025-04-07 10:22 90浏览
  • 曾几何时,汽车之家可是汽车资讯平台领域响当当的“扛把子”。2005 年成立之初,它就像一位贴心的汽车小助手,一下子就抓住了大家的心。它不仅吸引了海量用户,更是成为汽车厂商和经销商眼中的“香饽饽”,广告投放、合作推广不断,营收和利润一路高歌猛进,2013年成功在纽交所上市,风光无限。2021年更是在香港二次上市,达到了发展的巅峰,当年3月15日上市首日,港股股价一度高达184.6港元,市值可观。然而,如今的汽车之家却陷入了困境,业务下滑明显。业务增长瓶颈从近年来汽车之家公布的财报数据来看,情况不容
    用户1742991715177 2025-04-07 21:48 48浏览
  • 在万物互联时代,智能化安防需求持续升级,传统报警系统已难以满足实时性、可靠性与安全性并重的要求。WT2003H-16S低功耗语音芯片方案,以4G实时音频传输、超低功耗设计、端云加密交互为核心,重新定义智能报警设备的性能边界,为家庭、工业、公共安防等领域提供高效、稳定的安全守护。一、技术内核:五大核心突破,构建全场景安防基座1. 双模音频传输,灵活应对复杂场景实时音频流传输:内置高灵敏度MIC,支持环境音实时采集,通过4G模块直接上传至云端服务器,响应速度低至毫秒级,适用于火灾警报、紧急呼救等需即
    广州唯创电子 2025-04-08 08:59 61浏览
  • 及时生产 JIT(Just In Time)的起源JIT 起源于 20 世纪 70 年代爆发的全球石油危机和由此引发的自然资源短缺,这对仰赖进口原物料发展经济的日本冲击最大。当时日本的生产企业为了增强竞争力、提高产品利润,在原物料成本难以降低的情况下,只能从生产和流通过程中寻找利润源,降低库存、库存和运输等方面的生产性费用。根据这种思想,日本丰田汽车公司创立的一种具有特色的现代化生产方式,即 JIT,并由此取得了意想不到的成果。由于它不断地用于汽车生产,随后被越来越多的许多行业和企业所采用,为日
    优思学院 2025-04-07 11:56 89浏览
  •     根据 IEC术语,瞬态过电压是指持续时间几个毫秒及以下的过高电压,通常是以高阻尼(快速衰减)形式出现,波形可以是振荡的,也可以是非振荡的。    瞬态过电压的成因和机理,IEC 60664-1给出了以下四种:    1. 自然放电,最典型的例子是雷击,感应到电力线路上,并通过电网配电系统传输,抵达用户端;        2. 电网中非特定感性负载通断。例如热处理工厂、机加工工厂对
    电子知识打边炉 2025-04-07 22:59 37浏览
  •   工业自动化领域电磁兼容与接地系统深度剖析   一、电磁兼容(EMC)基础认知   定义及关键意义   电磁兼容性(EMC),指的是设备或者系统在既定的电磁环境里,不但能按预期功能正常运转,而且不会对周边其他设备或系统造成难以承受的电磁干扰。在工业自动化不断发展的当下,大功率电机、变频器等设备被大量应用,现场总线、工业网络等技术也日益普及,致使工业自动化系统所处的电磁环境变得愈发复杂,电磁兼容(EMC)问题也越发严峻。   ​电磁兼容三大核心要素   屏蔽:屏蔽旨在切断电磁波的传播路
    北京华盛恒辉软件开发 2025-04-07 22:55 50浏览
  • 贞光科技作为三星电机车规电容代理商,针对电动汽车领域日益复杂的电容选型难题,提供全方位一站式解决方案。面对高温稳定性、高可靠性、高纹波电流和小型化等严苛要求,三星车规电容凭借完整产品矩阵和卓越技术优势,完美满足BMS、电机控制器和OBC等核心系统需求。无论技术选型、供应链保障、样品测试还是成本优化,贞光科技助力客户在电动汽车产业高速发展中占据技术先机。在电动汽车技术高速发展的今天,作为汽车电子系统中不可或缺的关键元器件,电容的选型已成为困扰许多工程师和采购人员的难题。如何在众多参数和型号中找到最
    贞光科技 2025-04-07 17:06 31浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦