关于碳化硅的一些分享,期待相遇!

人生更在艰难内,胜事年来不易逢。

最近的生活看上去有点糟糕,但转眼再看看世间的疾苦,回头又很是释然。有的时候你不得不向生活低头,但希望这是短暂的,因为一切都会变好,也许是自我安慰,但真的希望是这样。

去留无意,闲看庭前花开花落;宠辱不惊,漫随天外云卷云舒!

前两天参加了一个发展迅速的国产碳化硅企业举办的论坛,主打宣传自己的产品和发展远景,看得出来在时代的浪潮下他们付出的努力。偶然看到一篇最新的讲述碳化硅前景的文章,今天跟大家一起分享一下。顺便在文末给大家安利了下个月无锡举办的一场关于碳化硅的论坛,感兴趣的欢迎参加,相信它能够给大家带来许多碳化硅应用和发展的信息。

前言

在半导体研究中我们经常看下面这个公式,

理想比导通电阻的一个关系式,其中WD是满足所需击穿电压BV的漂移区的厚度,q是电子电荷,ND是漂移区的掺杂浓度,μn是电子迁移率,εn是半导体介电常数,EC是所需耐压的临界电场值。

这里我们又可以推导出一个公式,

也就是我们常说的Baliga优值,由于每种半导体材料的击穿临界电场是随击穿电压而变的,所以BFOM适合在相同的BV条件下比较不同的半导体材料。

下图是基于击穿临界电场的各个半导体材料的比导通电阻的比较,

我们可以看出,使用较大的Ec能够显著地减小,这是为什么碳化硅(Ec近硅基10倍)快速发展的主要原因之一。

最初碳化硅应用的目标场景是在航空航天、国防和高温应用,这也推动了20世纪90年代更大直径和更低微管密度的碳化硅晶圆的发展,同时也得到了足够的资金支持。碳化硅经过这些年的沉淀,如今在各个应用基本都能看到它的身影,以后只会更盛,只是需要足够的时间。


SiC 肖特基二极管

在20世纪80年代,通用电气发明IGBT和商业化不久,硅基二极管的反向恢复行为不佳便成为了电机控制等领域的主要障碍,估计整流桥中的大反向恢复电流,IGBT搭配应用中的显著损耗等。后来也出现了硅基肖特基二极管,但由于漂移区的电阻较高,反向阻塞时的漏电流很高,限制了其耐压不适合超过300V。所以使用碳化硅取代硅,能够将漂移区电阻降低1000倍,这为制造碳化硅肖特基二极管提供了强大动力。第一个400V的碳化硅肖特基是基于6H-SiC的,与硅基PiN二极管相比,其导通压降约为1.1V,没有反向恢复电流。

与硅基相比,由于金属-半导体界面的电场大得多,碳化硅肖特基势垒降低的效果要差很多;同时由于漂移区的掺杂浓度较大,从而产生了较强的隧穿诱导电流。这两者都导致了泄漏电流的大量增加。

幸运的是,这个问题有一个很好的解决方案,早前被称为"pitch-rectifier"应用到硅基肖特基上,后来被成为结势垒肖特基(JBS),依赖于肖特基接触下方的PN结。

早在1998年就出现了基于4H-SiC的JBD二极管,2005年1.2kV的商业化,由于光伏储能等应用的需求,1.7kV与2015年发布,同时3.3kV的SiC肖特基二极管也被开发。开发更高耐压的肖特基二极管将带来更多应用上的优化,比如应用于微电网中的10kV肖特基二极管。

SiC 平面栅MOSFET

广泛用于制造硅基MOSFET的双扩散工艺不太适合碳化硅,主要是因为在多晶硅栅极能够承受的温度下,N和P型掺杂剂的扩散系数太低,所以一般采用的是离子注入工艺,这种方法在1997年首次用于6H-SiC的MOSFET。

基本的平面栅MOSFET的结构如下图,

其中包含了P+屏蔽区域,旨在减少氧化物中的电场,在没有P+屏蔽区时,电场的大穿透导致了有限的击穿电压,除非使用较长的通道。在高压阻塞状态下,碳化硅漂移区的大电场会引起栅极氧化物的可靠性问题,P+屏蔽区在JFET区域产生了一个势垒,从而降低了氧化物附近的电场,使其保持在3MV/cm以下,以确保其可靠性。在碳化硅功率MOSFET中优化JFET区域的宽度,能够减少比导通电阻,还能够抑制栅极氧化物中的电场。

SiC平面栅JBSFETS

最初提出在碳化硅MOSFET中通过体二极管来进行第三象限的电流流动,但由于双极性退化的原因,导致了MOSFET特性的退化。主要是双极电流传输引起的基面位错产生的堆叠引起的。可以通过并联一个碳化硅二极管来绕过双极性的体二极管,但这相当于额外的增加了一个器件,所以提出了MOSFET集成JBS二极管的方案,即JBSFET。

此外,由于JBS具有较小的通道密度,它比MOSFET具有更高的短路耐受能力。

SiC 沟槽栅MOSFET

硅基的平面栅到沟槽栅,我们可以在碳化硅中看到平面栅和沟槽栅,但由于一些原因,目前只有部分厂家推出了沟槽栅碳化硅MOSFET。下图是沟槽栅MOSFET的示意结构图,

但这个结构并不适合碳化硅MOSFET,首先,在阻塞状态下,在沟槽底部会形成非常大的电场,对于栅极氧化物造成较大的威胁。其次,除非使用非常宽的P基区,否则在P基区的耗尽层穿透会使通道电阻非常大。为了应对上述问题,多种沟槽栅的方案被提出。

小结

从长远来看,碳化硅MOSFET的发展还是以降低成本,降低导通电阻,提高可靠性为主,同时往更高的电压等级发展,以及高耐压的碳化硅IGBT。当然就目前应用最多的,依旧是650V~1700V或者2200V耐压的碳化硅器件,主要集中于新能源汽车,光伏储能等这些各大厂家深耕的领域。

这不,6月15-16日 在江苏·无锡举办 2023 碳化硅器件应用与测试技术大会,会议将分为两个应用专场展开,重点聚焦碳化硅产品在光储系统及车用主驱产品中的当前的应用进展及技术要求。

相信大家也很久没见面了,期待与你相遇。

(粉丝听说有优惠,哈哈,我也只能争取到这儿了)

今天分享的这篇文章来自B. Jayant Baliga,半导体元老的"Silicon Carbide Power Devices: Progress and Future Outlook"。

希望你们能够喜欢!

END

Power semiconductors

关注微信号,让我们由浅入深慢慢丰富功率半导体那些事儿!


分享收藏点赞在看


功率半导体那些事儿 从易到难,慢慢地支撑起整个半导体的框架,一个从零开始学习功率半导体的地方,我们可以一起谈谈功率半导体的那些事儿。
评论
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 99浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 94浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 66浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 114浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 134浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 146浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 104浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 79浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦