在通信系统中使用抖动改进ADC的SFDR

原创 EETOP 2023-05-22 11:39


在之前的文章中,我们讨论了如何使用抖动来通过打破量化误差和输入信号之间的统计相关性来提高理想量化器的性能。所谓理想,是指 ADC传递函数具有统一的阶跃。换句话说,理想的 ADC 具有零 DNL 误差。这种抖动应用在需要高SFDR 的无线电接收器中尤为重要。

在本文中,我们将讨论抖动的另一个重要应用,即改善现实中的 A/D 转换器的 SFDR,例如 AD6645,会出现 DNL误差。这种抖动应用在当今需要高 SFDR 的无线电接收器中尤为重要。

ADC 静态和动态线性度

在开始之前,让我们首先快速回顾一下提高 ADC 线性度的主要限制。尽管 ADC 使用不同的架构和电路实现,但它们有两个主要的非线性源:采样保持(S/H) 电路和 ADC 的编码器部分。S/H 非线性部分源于这样一个事实,即它具有有限的转换速率,并且当输入是具有大振幅的高频信号时,可能无法足够快地跟随输入。缺乏表现出足够转换率的 S/H 是许多 ADC 无法提供高于几兆赫信号带宽的高 SFDR 的一个关键原因。这也解释了为什么 S/H 的非线性与频率有关。S/H 在确定 ADC的动态(或 AC)线性度方面起着关键作用。

另一个非线性源是 ADC 编码器部分。对于给定的 ADC 相位,编码器部分主要处理直流信号,因为它位于 S/H 之后。因此,编码器非线性会导致系统的静态(或直流)非线性。理想情况下,非线性成分不会随频率变化。静态非线性的特征在于ADC 传递函数中的DNL 和INL(积分非线性)误差。术语“静态非线性”可能用词不当,因为这种非线性成分不仅影响直流信号,而且在处理交流信号时还会降低线性度。

请注意哪种非线性类型占主导地位!

本文要牢记的另一件重要事情是,对于许多 ADC,S/H 是非线性的主要来源。在这种情况下,谐波失真性能会随着输入接近奈奎斯特频率而迅速下降。如果 S/H 是限制因素,则无法通过外部方式显著改善 ADC 线性度。但是,某些 ADC 专门设计有宽带、高线性度的前端。这使得编码器部分成为非线性的主要来源。对于此类 ADC,我们可以使用抖动技术来改善 ADC SFDR。在研究这种抖动应用之前,让我们仔细看看 ADC 静态传递函数引入的非线性误差。

传递函数非线性——确定性误差

为了更好地理解静态非线性,我们将以图 1 所示的传递函数引入的非线性误差为例进行研究。

图 1. 引入非线性误差的传递函数示例

上图中的红色曲线表示非线性 4 位 ADC,而蓝色曲线表示理想的 4 位响应。如果我们使用上述特性曲线将以 4 MHz 采样的 1.11 kHz 正弦波数字化,我们将获得图 2 中的波形。

图 2.以 4 MHz 采样的数字化 1.11 kHz 正弦波的波形

在图 2 中,绿色曲线显示输入,而蓝色和红色曲线分别是理想和非线性传递函数的输出。通过从红色曲线中减去蓝色曲线,我们可以确定非理想响应引入的非线性误差。这由图 3 中的红色曲线显示。

图 3. 显示非理想响应引入的非线性误差的图。 

传递函数非线性引入的误差是确定性误差。这意味着,对于给定的输入电压,误差始终相同。例如,参考图 1,我们观察到 6 LSB(最低有效位)的输入总是导致比理想值高 3 LSB 的输出。这种确定性行为在输入和错误之间建立了相关性。如果输入处于特定频率,我们预计误差在与输入相关的某些特定频率处具有很强的频率分量。

图 3 可以帮助您更好地理解这种情况。在这种情况下,误差波形不完全是周期性的;但是,错误的整体形状似乎会以规律的方式重复出现。即输入信号在一个周期内有两次重复。这表明误差在输入的二次谐波处具有很强的分量。为了更好地形象化这一点,该图还绘制了 2.22 kHz(二次谐波)的正弦波。如您所见,正弦波近似于误差波形整体形状的趋势。

对非线性响应输出进行快速傅里叶变换 (FFT),我们得到图 4 中的频谱,其中仅显示 DC 至 50 kHz 范围。

图 4. 显示从 DC 到 50 kHz 范围内的非线性响应输出

FFT 结果证实二次谐波是非线性响应的主要频率分量。值得一提的是,主要谐波分量的频率取决于 ADC的 INL 形状。对于图 1 所示的非线性(有时称为弓形 INL),二次谐波是主要谐波。对于 S 形 INL,三次谐波是误差的主要频率分量。

打破 ADC 误差与输入之间的相关性

如果我们向输入添加一个相对较大的随机信号,使 ADC 的整体输入以不可预测的方式在ADC 传递函数的不同阶跃之间变化,我们可以在一定程度上减少确定性失真。这个概念如图 5 所示。

图 5. 显示 ADC 传递函数阶跃期间 ADC 输入变化的基本图。图片由Analog Devices提供

添加随机信号(或抖动信号)后,给定的输入并不总是转换为相同的输出电平。因此,即使输入不变,误差也会随时间变化。例如,考虑将 6 LSB 的输入应用于图 1 中的传递函数。如果没有抖动,误差始终为 3 LSB。现在考虑抖动的情况。假设抖动信号偶尔等于 2 LSB。在 2 LSB 处,非线性误差变为零。由于误差在 0 和 3 LSB 之间变化,因此与未抖动情况相比,误差平均值有所降低。这个简单的例子展示了抖动如何消除输入和非线性误差之间的相关性,从而减少确定性失真。抖动通过使转换器的 DNL 误差离域或随机化来实现这一点。

通信系统抖动技术

抖动技术在通信系统中特别有用。对于许多通信应用,输入可以是远低于 ADC 满量程的小信号。这个小信号使用相对少量的 ADC 输出码字。如果这些输出码字表现出较大的 DNL误差,则输出将包含显著的谐波失真。

请注意,对于满量程(或大)信号,DNL 误差在某种程度上是固有平均的。原因是大信号会覆盖 ADC 的所有输出码字。因此,当信号幅度降至低于满量程值 20 dB 时,具有 88 dBFS 满量程 SFDR 的 ADC 可能仅提供 80 dBFS 的 SFDR。在这种情况下,抖动技术可能有助于我们在低信号水平下保持 ADC的 SFDR 性能。应该注意的是,由于输入电平很小,我们可以将抖动信号添加到输入,而不会过度驱动 ADC。

ADC 加入噪声——不是在丢失信息吗?

你可能会问:我们在输入信号中加入比较大的噪声不是丢失了信息吗?答案是信息似乎在时域中丢失了。然而,通过适当选择噪声信号以及信号处理技术,我们可以重建原始信息。一种解决方案是减法式色抖动。在这种情况下,将图 5 中的基本图修改为下图(图 6)。

图 6. 减法式抖动图。图片由Analog Devices提供

在减法方法中,引入输入的噪声以相反的极性添加到输出,从而将系统输出端的净抖动噪声归零。在通信系统中使用的另一种有趣的技术是使用频率内容超出所需信号带宽的窄带噪声。几百 kHz 的小带宽对于抖动信号通常就足够了。带外噪声的两个可能位置是直流附近或略低于奈奎斯特频率(f s /2,其中 f s 是采样频率)。在可用于抖动目的的大多数通信系统中不使用这两个频率区之一。在这种情况下,可以很容易地在输出端滤除抖动。

分析一下我们假设的 ADC

让我们使用图 1 中的传递函数来研究这种技术。为此,我们向该 ADC 应用幅度为 2 LSB 和 DC 值为 7.5 LSB 的 1.11 kHz 正弦波。这样的输入会执行 ADC 的中档代码。从略高于 0 Hz 到 30 kHz 范围的输出频谱如图 7 所示。

图 7.  1.11 kHz 正弦波的另一个示例图,其频谱范围略高于 0 Hz 至 30 kHz

对于这个特定的输入,有几个不同的谐波分量,但主要的仍然是二次谐波。将值转换为分贝,我们发现 SFDR 为 17.47 dBc。为了产生抖动信号,我们可以使用 Matlab 的“randn”函数来产生具有 2 LSB RMS(均方根)的宽带高斯噪声。应用以 1.94 MHz 为中心的通带为 100 kHz 的带通滤波器,宽带噪声被转换为略低于 f s /2的窄带抖动。抖动信号的频谱如下图 8 所示。

图 8. 抖动信号的示例频谱

由于抖动信号是原始噪声的带限版本,我们可以使用以下等式来确定抖动信号的方差:


代入数字,我们得到:


取该值的平方根,抖动信号的 RMS 为 0.45 LSB。抖动的峰峰值可以估计为 6.60.45 = 2.97 LSB(RMS 高斯噪声乘以 6.6 转换为峰峰值)。请注意,抖动的峰峰值足够小,不会过度驱动 ADC。应用抖动后,我们获得以下输出频谱(图 9)。

图 9. 应用抖动 RMS 后的输出频谱

可以看出,谐波被显著抑制。将值转换为分贝,我们获得 27.9 dBc 的 SFDR,与未抖动情况相比提高了 10.43 dB。抖动通过将信号杂散散布到本底噪声中来抑制谐波分量。

真实世界 ADC 的测试结果——ADC3424

下面的图 10 显示了ADC3424对于 70 MHz 输入的输出频谱。

图 10.  70 MHz 输入时 ADC3424 的输出频谱。图片由德州仪器提供

ADC3424 提供抖动功能作为内部特性。关闭内部抖动后,SFDR 为 91 dBc。然而,随着内部抖动被激活,杂散扩散到本底噪声中,并且 SFDR 增加到 99 dBc。

抖动技术限制

可显著改善 ADC SFDR 的适当抖动级别取决于特定 ADC 的架构和其他属性。SFDR 的改善还取决于输入信号的幅度以及抖动的幅度。还应注意,超过一定的噪声水平,SFDR可能不会显著改善。 以Analog Devices 的AD6645为例。该设备使用多级架构。对于这种类型的 ADC 架构,DNL 误差具有重复模式,并且当输入扫过 ADC 输入范围时,DNL 图中有一些尖峰。下面的图 11 显示了 AD6645 在其一小部分输入范围内的 DNL 图。

图 11.  AD6645 在其一小部分输入范围内的 DNL 图。图片由Analog Devices提供

对于 AD6645,尖峰每 512 个 LSB 出现一次。经实验发现适合此特定 ADC的抖动电平为 1024 LSB 峰峰值或 155 LSB RMS。应用更大的抖动不会显著改善 AD6645 的 SFDR。对于这个 ADC,抖动的峰峰值等于两个 DNL 尖峰之间代码距离的两倍。但是,我们不能断定这是所有多级 ADC 的一般规则。

推荐阅读:
  • PPT分享:SerDes专题--高速低抖动PLL/DLL/CDR电路专题

  • 原创模拟IC论文分享--TCAS-II主编邀稿:极低抖动频率综合器的多速率时间戳建模

  • 相位噪声vs时间抖动

  • 计算隔离式精密高速DAQ的采样时钟抖动的简单步骤

  • 深入浅出聊抖动(Jitter)

  • 什么是抖动?利用抖动消除ADC量化误差


EETOP EETOP半导体社区-国内知名的半导体行业媒体、半导体论坛、IC论坛、集成电路论坛、电子工程师博客、工程师BBS。
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 170浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 114浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 44浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦