使用共源共栅拓扑消除半导体开关中的米勒效应

Qorvo半导体 2023-05-22 10:46

由于存在物理学定律,电阻、电容和电感将继续成为挑战。我们对此无能为力,所以自热离子真空管问世以来,电子设计人员就学会了通过开发巧妙的电路拓扑来解决这些问题。事实证明,物理学就是物理学,过去适用于真空管的理论同样适用于如今的高性能半导体。了解更多信息。


这篇博客文章最初由 United Silicon Carbide (UnitedSiC) 发布,该公司于 2021 年 11 月加入 Qorvo 大家庭。UnitedSiC 是一家领先的碳化硅 (SiC) 功率半导体制造商,它的加入促使 Qorvo 将业务扩展到电动汽车 (EV)、工业电源、电路保护、可再生能源和数据中心电源等快速增长的市场。


作者:研发工程师 Zhonda Li


任何东西都打破不了物理定律。电阻器会将电能转为热能耗散,同时降低电压;电容器需要时间来储存和释放电荷;电感器需要时间来产生和消除电磁场。我们对此无能为力,所以自热离子真空管问世以来,电子设计人员就学会了通过开发巧妙的电路拓扑来解决这些问题。事实证明,物理学就是物理学,适用于真空管的理论同样适用于如今的高性能半导体。


米勒电容如何限制高频放大


以米勒效应为例。20 世纪 20 年代,美国电气工程师 John Milton Miller 发现将简单三极真空管用作放大器时,栅极与阳极之间存在内部电容,这会导致一个问题。当电容阻抗随工作频率的上升而下降时,会施加越来越多的负反馈,从而降低放大器的带宽。


Miller 发现采用级联三极管或共源共栅拓扑结构,将两个三极真空管串联可减少输入至输出的总电容,如图 1 中所示。鉴于上部电子管栅极处于固定电压下,所以上部三极真空管的阴极电压由下部三极真空管控制。开发出带内部屏栅极的四极管后,这种内部电容及其相关影响就会降低,从而制造出工作频率为数百兆赫的单管放大器。


图 1:初始的级联三极管或共源共栅电路


米勒效应的回归


当设计人员开始使用固态半导体替换热离子真空管时,米勒效应又出现了,并且开始再次限制高频操作。


为什么会这样?在基于 MOSFET 的开关电路中,米勒效应会限制开关速度,因为驱动电路必须以可靠的低损耗方式对输入电容进行充放电。这种米勒电容效应(即 CGD)会随着栅极电压的不同而变化。


例如:考虑使用在栅极费电压为 0V 时关断的增强模式 MOSFET 开关。总栅极输入电容如同一个网络(见图 2),包括 CGS、CGD、CDS、负载 ZL 以及大电容 CBULK。此外,CGD 两端为正电压。MOSFET 接通时,漏极电压降至几乎为零,且总电容变为 CGD 与 CGS 并联,与断开状态相比,CGD 两端为负电压。在接通到断开以及断开到接通的开关过程中,输入电容必须在上述情况之间切换。


图 2:断开和接通时,MOSFET 的等效输入电容


MOSFET 栅极开关波形中正向部分的平稳段(见图 3)表示两个输入电容状态之间的过渡,因为驱动器必须突然提高工作负荷,所以转换速度变慢。更糟糕的是,当漏极电压下降时,会试图“推动”栅极负压经过 CGD,与正导通电压命令相抵触。当断开 MOSFET 时,这个过程就会反过来。CGD 会试图“拉动”栅极正电压,所以我们鼓励使用 MOSFET 和 IGBT 的设计人员使用负的关态栅极电压来抵消这种影响。这会反过来增加驱动栅极所需的功率。


图 3:栅极驱动电压的米勒电容 “平稳段”


控制栅极-漏极电容


器件的栅极-漏极电容 (CGD) 会受半导体器件的架构影响,其变化因器件是横向构建还是纵向构建而异。我们可以通过缩小 CGD 来获得低电压 MOSFET,但这在高压下会变成一个问题,尤其是当设计人员想要使用碳化硅 (SiC) 或氮化镓 (GaN) 等材料构建宽带隙器件时。有些物理问题是无法回避的:这些技术的开关速度仍受限于其米勒电容,而使用共源共栅电路拓扑是消除这种影响的最佳方法。


现代共源共栅


LINKS NEEDED 基本的 SiC 开关使用结 FET (JFET) 架构。如果 JFET 为纵向结构器件,则其 CGD 可以达到较有利的低点,且其漏极-源极电容 CDS 还可以更低。但是,JFET 为常开器件,其栅极电压为 0 V,需要负栅极电压才能关断。这是桥式电路中存在的一个问题。在桥式电路中,所有器件在瞬时通电时默认为导通状态。最好使用常闭器件来构建此类电路,该器件可通过将 Si MOSFET 和 SiC JFET 布置在级联型拓扑中来实现,见图 4


图 4:Si/SiC 共源共栅


当 MOSFET 的栅极和源极电压均为 0 V 时,其漏极电压会上升。JFET 栅极也为 0V,所以当其源极电压(来自 MOSFET 漏极)上升至 10 V 时,JFET 栅极与源极之间的负电压为 -10V,从而会使 JFET 关断。当 MOSFET 栅极为正时,MOSFET 处于接通状态,并且会使 JFET 的栅极-源极短路,从而接通 JFET。这种电路拓扑可实现 MOSFET 栅极电压为 0V 的常闭器件。此外在该拓扑中,串联输入-输出电容(包括 JFET 的 CDS)接近于 0,从而可以减少米勒效应及其对高频增益的影响。


其他优势


在开关时,由于 JFET 的源极电容 CDS 几乎为零而 MOSFET 的 CDS 不为零,所以 Si MOSFET 漏极电压会 “全然涌入” JFET 漏级,使得 MOSFET 漏极始终保持在低电压状态。换句话说,MOSFET 可以是低电压类型,且漏极与源极间导通电阻非常低,因此栅极驱动变得更容易。其另一个优势在于,低电压 MOSFET 的体二极管具有非常低的正向压降,且快速恢复性能出色。JFET 没有体二极管,所以在换向桥接电路或同步整流等应用中,需要进行第三象限换向开关导通时,MOSFET 体二极管就会导通。这会将 JFET 栅极-源极电压保持在大约 +0.6 V,确保能够硬接通 JFET,使反向电流以低压降流动。


米勒效应的终结


SiC 共源共栅拓扑能够解决米勒电容问题,同时轻松实现栅极驱动、常关运行和高性能体二极管。这与 SiC MOSFET 和 GaN HEMT 均不同——前者的体二极管的性能比较差,后者的 CDS 比较高。物理学定律的不变性导致了热离子器件中出现限制高频增益的米勒效应,也在半导体器件中带来了许多问题。然而,这种不变性也意味着基于共源共栅的解决方案在现代 SiC 器件中的作用与在老式真空管中的一样有效。事物越是看似在变,就越是亘古不变。


请点击此处

https://unitedsic.com/downloads/

了解更多有关 UnitedSiC 以及共源共栅优势的信息。


Qorvo半导体 射频领域技术分析与分享, 半导体行业信息交流
评论
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 300浏览
  • 项目展示①正面、反面②左侧、右侧项目源码:https://mbb.eet-china.com/download/316656.html前言为什么想到要做这个小玩意呢,作为一个死宅,懒得看手机,但又想要抬头就能看见时间和天气信息,于是就做个这么个小东西,放在示波器上面正好(示波器外壳有个小槽,刚好可以卡住)功能主要有,获取国家气象局的天气信息,还有实时的温湿度,主控采用ESP32,所以后续还可以开放更多奇奇怪怪的功能,比如油价信息、股票信息之类的,反正能联网可操作性就大多了原理图、PCB、面板设计
    小恶魔owo 2025-01-25 22:09 177浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 173浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 197浏览
  • 不让汽车专美于前,近年来哈雷(Harley-Davidson)和本田(Honda)等大型重型机车大厂的旗下车款皆已陆续配备车载娱乐系统与语音助理,在路上也有越来越多的普通机车车主开始使用安全帽麦克风,在骑车时透过蓝牙连线执行语音搜寻地点导航、音乐播放控制或免持拨打接听电话等各种「机车语音助理」功能。客户背景与面临的挑战以本次分享的客户个案为例,该客户是一个跨国车用语音软件供货商,过往是与车厂合作开发前装车机为主,且有着多年的「汽车语音助理」产品经验。由于客户这次是首度跨足「机车语音助理」产品,因
    百佳泰测试实验室 2025-01-24 17:00 86浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 1038浏览
  • 随着AI大模型训练和推理对计算能力的需求呈指数级增长,AI数据中心的网络带宽需求大幅提升,推动了高速光模块的发展。光模块作为数据中心和高性能计算系统中的关键器件,主要用于提供高速和大容量的数据传输服务。 光模块提升带宽的方法有两种:1)提高每个通道的比特速率,如直接提升波特率,或者保持波特率不变,使用复杂的调制解调方式(如PAM4);2)增加通道数,如提升并行光纤数量,或采用波分复用(CWDM、LWDM)。按照传输模式,光模块可分为并行和波分两种类型,其中并行方案主要应用在中短距传输场景中成本
    hycsystembella 2025-01-25 17:24 128浏览
  • 书接上回:【2022年终总结】阳光总在风雨后,启航2023-面包板社区  https://mbb.eet-china.com/blog/468701-438244.html 总结2019,松山湖有个欧洲小镇-面包板社区  https://mbb.eet-china.com/blog/468701-413397.html        2025年该是总结下2024年的喜怒哀乐,有个好的开始,才能更好的面对2025年即将
    liweicheng 2025-01-24 23:18 148浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 168浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 228浏览
  • 前篇文章中『服务器散热效能不佳有解吗?』提到气冷式的服务器其散热效能对于系统稳定度是非常重要的关键因素,同时也说明了百佳泰对于散热效能能提供的协助与服务。本篇将为您延伸说明我们如何进行评估,同时也会举例在测试过程中发现的问题及改善后的数据。AI服务器的散热架构三大重点:GPU导风罩:尝试不同的GPU导风罩架构,用以集中服务器进风量,加强对GPU的降温效果。GPU托盘:改动GPU托盘架构,验证出风面积大小对GPU散热的影想程度。CPU导风罩:尝试封闭CPU导风罩间隙,集中风流,验证CPU降温效果。
    百佳泰测试实验室 2025-01-24 16:58 67浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦