抗混叠滤波器:将采样理论应用于ADC设计

摩尔学堂 2023-05-19 13:09

本文研究了奈奎斯特-香农采样定理的一个重要方面,并解释了它与模数转换中抗混叠滤波器需求的联系。

到目前为止,我们已经探讨了奈奎斯特-香农定理的理论基础,包括频域对采样的影响。然后我们谈到了这些基本原则如何应用于现实生活中的电路设计——具体来说,解决了 现实生活中混合信号系统中过采样的重要性。

在整个系列中,我使用的采样定理版本指出,当采样率等于或大于原始信号中最高频率的两倍时,完美重建是可能的——不是感兴趣的频率,也不是主频率,但频率最高

这个看似无害的小细节实际上在理论采样和现实生活中的 A/D 转换之间造成了重大裂痕。

您的信号的最高频率是多少?

采样定理的第一个问题是您永远无法以最高频率的两倍进行采样:由于热噪声在太赫兹范围内具有恒定的功率谱密度,每个信号的带宽都远远超过模拟信号的能力- 到数字转换器。

当然,我并不是说所有信号在 1 THz 下都有一点噪声,因此混合信号电子设备不存在。相反,我试图戏剧性地证明不可能查看信号的傅里叶变换,绘制一条垂直线,并声明该线右侧的频谱完全为空。

噪声、干扰和自然现象的逐渐变化特征都会导致信号频谱没有容易识别的最高频率。

高频元件和混叠

为什么我们不能忽略那些麻烦的频率分量呢?我们不打算将它们数字化,我们不需要分析或记录它们——让我们忘记它们并根据我们想要的频率选择采样率吧!

我希望事情就这么简单,但我们必须记住,当模拟输入频率超过采样频率的一半时会导致混叠——顺便说一下,这有时被称为折叠频率,因为高于该频率的分量会围绕采样频率折叠从而与原始光谱重叠。我们不能简单地忽略折叠频率以上的成分,因为它们会与感兴趣的频率混合,从而消除我们完美重建原始信号的能力。

考虑下图:


 

假设频谱的主要钟形部分包含感兴趣的频率,逐渐向零衰减的低幅度尾部代表不重要的高频分量。

该系统中选择的采样率足以捕获感兴趣的频率,但我们不能忽略不重要的频率,因为混叠会导致不重要的频率延伸到我们想要准确重建的频谱部分并使其失真。

然而,这种忽略不重要频率的想法实际上是我们如何在工程系统中处理这个问题的基础。归根结底,我们必须忽略不需要的高频,因为我们无法完全消除它们。但在我们忽略它们之前,我们至少应该做出一些努力来减轻它们对系统性能的有害影响。

这就是抗混叠滤波器发挥作用的地方。

采样前过滤

香农采样定理指定了相对于信号最高频率的最小可接受采样率。另一种说法是,香农给了我们带限信号的采样率要求,即傅立叶变换具有可识别上限的信号。

我们在物理电路中发现的信号并不是真正的带限信号,但我们无论如何都要对它们进行采样,因此,我们将尝试使它们成为带限信号。这就是抗混叠滤波器的目的。

通过在采样前让信号通过低通滤波器,我们可以衰减指定频率以上的频谱内容,从而创建频率上限。

 


 

信号不会完全受限,因为现实生活中的滤波器不会在截止频率以上产生无限衰减。然而,它可以足够接近带宽限制:混叠会发生,但它对整体系统性能的影响可以忽略不计。

我们如何选择截止频率?

这将取决于各种因素。一般的想法是保留频谱的重要部分并抑制不重要的部分。然后,您可以根据希望将混叠到感兴趣的频谱中的频率分量衰减多少来选择 ADC 采样率。

假设您正在为抗混叠滤波器使用一阶RC 低通滤波器,截止频率为 20 kHz。频率响应如下所示:

如果您以 100 kHz 采样,则折叠频率为 50 kHz:高于 50 kHz 的所有频率都会导致混叠误差。因此,使用这个滤波器,“混叠带”将有 9 dB 的最小衰减。

够了吗?

这个问题没有简单的答案,无论如何,答案取决于系统要求。 

尽管如此,我的工程直觉告诉我,我们应该努力将混叠带的幅度降低至少一个数量级。这个一阶 RC 滤波器在 200 kHz 时为我们提供 20 dB 的衰减,因此我们需要以 400 kHz 进行采样。在我喜欢使用的 ADC 的背景下,这是一个相当高的采样率——即那些可以方便地集成到微控制器中的 ADC 。因此,我可能不得不放宽衰减要求,或者我可以考虑为抗混叠滤波器使用二阶拓扑。

结论

顾名思义,抗混叠滤波器可减少我们对信号进行采样时发生的混叠量。他们通过抑制折叠频率以上的频谱内容来做到这一点,从而使现实生活中的信号与香农采样定理适用的带限信号更加一致。

虽然您可以通过提高采样率来降低抗混叠滤波器的重要性,但我认为在您的 ADC 电路中始终至少包含一个基本 RC 滤波器是一种很好的做法。





5月30-31号、6月08-09号,两期从基础到高级的ADC讲座,将涵盖高速ADC设计的原理、传统架构和最先进的设计。第一部分首先回顾了ADC的基本知识,包括采样、开关电容和量化理论。接下来,介绍了经典ADC架构的基础和设计实例,如闪存、SAR和流水线ADC。然后,本教程将对混合型ADC架构进行总体概述,这就结束了第一部分。在第二部分,首先描述了ADC的度量。然后,介绍混合或非混合架构的各种先进设计。该教程最后将以数字辅助解决技术结束。

>>>点击图片了解课程详情!


--------------------

今天小编带来了:ISSCC2023套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。

ISSCC2023完整资料领取方式如下   
识别关注下方公众号
公众号对话框输入 1425 
由于公众号后台资料容量有限
每份资料有效期为30天,过期会被更新删除
资料仅供个人学习使用,禁止分享与转发!
大家如果需要,请及时下载!

1、深入理解SerDes(Serializer-Deserializer)之一

2、深入理解SerDes(Serializer-Deserializer)之二

3、科普:深入理解SerDes(Serializer-Deserializer)之三

4、资深工程师的ESD设计经验分享

5、干货分享,ESD防护方法及设计要点!

6、科普来了,一篇看懂ESD(静电保护)原理和设计!

7、锁相环(PLL)基本原理 及常见构建模块

8、当锁相环无法锁定时,该怎么处理的呢?

9、高性能FPGA中的高速SERDES接口

10、什么是毫米波技术?它与其他低频技术相比有何特点?

11、如何根据数据表规格算出锁相环(PLL)中的相位噪声

12、了解模数转换器(ADC):解密分辨率和采样率

13、究竟什么是锁相环(PLL)

14、如何模拟一个锁相环

15、了解锁相环(PLL)瞬态响应

16、如何优化锁相环(PLL)的瞬态响应

17、如何设计和仿真一个优化的锁相环

18、锁相环(PLL) 倍频:瞬态响应和频率合成

19、了解SAR ADC

20、了解 Delta-Sigma ADC

21、什么是数字 IC 设计?

22、什么是模拟 IC 设计?

23、什么是射频集成电路设计?

24、学习射频设计:选择合适的射频收发器 IC

25、连续时间 Sigma-Delta ADC:“无混叠”ADC

26、了解电压基准 IC 的噪声性能

27、数字还是模拟?I和Q的合并和分离应该怎么做?

28、良好通信链路性能的要求:IQ 调制和解调

29、如何为系统仿真建模数据转换器?

30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)

31、使用有效位数 (ENOB) 对 ADC 进行建模

32、以太网供电 (PoE) 的保护建议

33、保护高速接口的设计技巧

34、保护低速接口和电源电路设计技巧

35、使用互调多项式和有效位数对 ADC 进行建模

36、向 ADC 模型和 DAC 建模添加低通滤波器

37、揭秘芯片的内部设计原理和结构

38、Delta-Sigma ADCs中的噪声简介(一)

39、Delta-Sigma ADCs中的噪声简介(二)

40、Delta-Sigma ADCs 中的噪声简介(三)

41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)

42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)

43、放大器噪声对 Delta-Sigma ADCs 的影响(一)

44、放大器噪声对 Delta-Sigma ADCs 的影响(二)

45、参考电压噪声如何影响 Delta Sigma ADCs

46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声

47、时钟信号如何影响精密ADC

48、了解电源噪声如何影响 Delta-Sigma ADCs

49、运算放大器简介和特性

50、使用 Delta-Sigma ADCs 降低电源噪声的影响

51、如何设计带有运算放大器的精密电流泵

52锁定放大器的基本原理

53了解锁定放大器的类型和相关的噪声源

54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术

55、干货!《实用的RFIC技术》课程讲义

56、如何在您的下一个 PCB 设计中消除反射噪声

57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!   

58、帮助你了解 SerDes!                                    

往期精彩课程分享

1、免费公开课ISCAS 2015 :The Future of Radios_ Behzad Razavi

2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)

3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)

4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs

5免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)

6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)

7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动

8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi

9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块

10、免费公开课:ISSCC2020-小数N分频数字锁相环设计

11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)

12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础

13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础

14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)

15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)

16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe

17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)





专注于半导体人才培训,在线学习服务平台!


人才招聘服务平台

摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论 (0)
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 40浏览
  •     今天,纯电动汽车大跃进牵引着对汽车电气低压的需求,新需求是48V。车要更轻,料要堆满。车身电子系统(电子座舱)从分布改成集中(域控),电气上就是要把“比12V系统更多的能量,送到比12V系统数量更少的ECU去”,所以,电源必须提高电压,缩小线径。另一方面,用比传统12V,24V更高的电压,有利于让电感类元件(螺线管,电机)用更细的铜线,缩小体积去替代传统机械,扩大整车电气化的边界。在电缆、认证行业60V标准之下,48V是一个合理的电压。有关汽车电气低压,另见协议标准第
    电子知识打边炉 2025-04-27 16:24 221浏览
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 98浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 90浏览
  • 2025年全球人形机器人产业迎来爆发式增长,政策与资本双重推力下,谷歌旗下波士顿动力、比亚迪等跨国企业与本土龙头争相入局,产业基金与风险投资持续加码。仅2025年上半年,中国机器人领域就完成42笔战略融资,累计金额突破45亿元,沪深两市机器人指数年内涨幅达68%,印证了资本市场对智能终端革命的强烈预期。值得关注的是,国家发展改革委联合工信部发布《人形机器人创新发展行动计划》,明确将仿生感知系统、AI决策中枢等十大核心技术纳入"十四五"国家重大专项,并设立500亿元产业引导基金。技术突破方面,本土
    电子资讯报 2025-04-27 17:08 243浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 95浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 85浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 75浏览
  • 在电子电路设计和调试中,晶振为电路提供稳定的时钟信号。我们可能会遇到晶振有电压,但不起振,从而导致整个电路无法正常工作的情况。今天凯擎小妹聊一下可能的原因和解决方案。1. 误区解析在硬件调试中,许多工程师在测量晶振时发现两端都有电压,例如1.6V,但没有明显的压差,第一反应可能是怀疑短路。晶振电路本质上是一个交流振荡电路。当晶振未起振时,两端会静止在一个中间电位,通常接近电源电压的一半。万用表测得的是稳定的直流电压,因此没有压差。这种情况一般是:晶振没起振,并不是短路。2. 如何判断真
    koan-xtal 2025-04-28 05:09 116浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 128浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦