Linux内核中的互斥锁、读写锁、自旋锁、信号量该如何选择?

原创 嵌入式悦翔园 2023-05-16 11:41

关注星标公众号,第一时间获取信息

一、前言

Linux内核中有许多不同类型的锁,它们都可以用来保护关键资源,以避免多个线程或进程之间发生竞争条件,从而保护系统的稳定性和可靠性。这些锁的类型包括:互斥锁(mutex)、读写锁(rwlock)、自旋锁(spinlock)和信号量(semaphore)。今天就给大家介绍一下Linux内核中的各种锁,以及我们在实际项目中该如何选择使用哪个锁。

二、几种锁的介绍

互斥锁(mutex 是最常用的锁,它可以保护共享资源,使得在某个时刻只有一个线程或进程可以访问它。读写锁(rwlock)则可以同时允许多个线程或进程读取共享资源,但只允许一个线程或进程写入它。自旋锁(spinlock)可以用来保护共享资源,使得在某个时刻只有一个线程或进程可以访问它,但它会使线程或进程“自旋”,直到获得锁为止。最后,信号量(semaphore)可以用来控制对共享资源的访问,以保证其他线程或进程可以安全地访问它们。

读写锁(rwlock 是一种用于控制多线程访问共享资源的同步机制。当一个线程需要读取共享资源时,可以获取读取锁,这样其他线程就可以同时读取该资源,而不会引发冲突。当一个线程需要写入共享资源时,可以获取写入锁,这样其他线程就不能访问该资源,从而保证数据的完整性和一致性。

自旋锁(spinlock 是一种简单而有效的用于解决多线程同步问题的锁。它是一种排他锁,可以在多线程环境下保护共享资源,以防止多个线程同时对该资源进行访问。自旋锁的基本原理是,当一个线程试图获取锁时,它会不断尝试获取锁,直到成功为止。在这期间,线程不会进入休眠状态,而是一直处于忙等待(busy-waiting)状态,这也就是自旋锁的由来。

信号量(semaphore 是一种常用的同步机制,它可以用来控制多个线程对共享资源的访问。它有助于确保同一时间只有一个线程能够访问共享资源,从而避免资源冲突和竞争。信号量是一种整数计数器,用于跟踪可用资源的数量。当一个线程需要访问共享资源时,它首先必须获取信号量,这会将信号量的计数器减少1,而当它完成访问共享资源后,它必须释放信号量,以便其他线程也可以访问共享资源。

四、互斥锁(Mutex)

互斥锁是最基本的锁类型,在内核中使用较为广泛。它是一种二元锁,只能同时有一个线程持有该锁。当一个线程请求该锁时,如果锁已被占用,则线程会被阻塞直到锁被释放。互斥锁的实现使用了原子操作,因此它的性能比较高,但也容易出现死锁情况。

在内核中,互斥锁的定义如下:

struct mutex {
    raw_spinlock_t      wait_lock;
    struct list_head    wait_list;
    struct task_struct  *owner;
    int                 recursion;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
    struct lockdep_map  dep_map;
#endif
};

互斥锁的使用非常简单,通常只需要调用两个函数即可完成:

void mutex_init(struct mutex *lock):函数用于初始化互斥锁
void mutex_lock(struct mutex *lock):函数用于获取互斥锁
void mutex_unlock(struct mutex *lock):函数用于释放互斥锁

五、读写锁(Reader-Writer Lock)

读写锁是一种特殊的锁类型,它允许多个线程同时读取共享资源,但只允许一个线程写入共享资源。读写锁的实现使用了两个计数器,分别记录当前持有锁的读线程数和写线程数。

在内核中,读写锁的定义如下:

struct rw_semaphore {
    long            count;
    struct list_head    wait_list;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
    struct lockdep_map  dep_map;
#endif
};

读写锁的使用也比较简单,通常只需要调用三个函数即可完成:

init_rwsem(struct rw_semaphore *sem):函数用于初始化读写锁
down_read(struct rw_semaphore *sem):函数用于获取读锁
up_read(struct rw_semaphore *sem):函数用于释放读锁
down_write(struct rw_semaphore *sem):函数用于获取写锁
up_write(struct rw_semaphore *sem):函数用于释放写锁

六、自旋锁(spinlock)

自旋锁是一种保护共享资源的锁,它会在等待期间一直占用CPU。自旋锁适用于代码临界区比较小的情况,且共享资源的独占时间比较短,这样就可以避免上下文切换的开销。自旋锁不能用于需要睡眠的代码临界区,因为在睡眠期间自旋锁会一直占用CPU。

在Linux内核中,自旋锁使用spinlock_t类型表示,可以通过spin_lock()spin_unlock()函数对其进行操作。

spin_lock_init(spinlock_t *lock):用于初始化自旋锁,将自旋锁的初始状态设置为未加锁状态。
spin_lock(spinlock_t *lock):用于获得自旋锁,如果自旋锁已经被占用,则当前进程会自旋等待,直到自旋锁可用。
spin_trylock(spinlock_t *lock):用于尝试获取自旋锁,如果自旋锁当前被占用,则返回0,否则返回1
spin_unlock(spinlock_t *lock):用于释放自旋锁。

在使用自旋锁时,需要注意以下几点:

  • 自旋锁只适用于临界区代码比较短的情况,因为自旋等待的过程会占用CPU资源。

  • 自旋锁不可重入,也就是说,如果一个进程已经持有了自旋锁,那么它不能再次获取该自旋锁。

  • 在持有自旋锁的情况下,应该尽量避免调用可能会导致调度的内核函数,比如睡眠函数,因为这可能会导致死锁的发生。

  • 在使用自旋锁的时候,应该尽量避免嵌套使用不同类型的锁,比如自旋锁和读写锁,因为这可能会导致死锁的发生。

  • 当临界区代码较长或者需要睡眠时,应该使用信号量或者读写锁来代替自旋锁。

七、信号量(semaphore)

信号量是一种更高级的锁机制,它可以控制对共享资源的访问次数。信号量可分为二元信号量和计数信号量。二元信号量只有01两种状态,常用于互斥锁的实现;计数信号量则可以允许多个进程同时访问同一共享资源,只要它们申请信号量的数量不超过该资源所允许的最大数量。

在Linux内核中,信号量使用struct semaphore结构表示,可以通过down()up()函数对其进行操作。

void sema_init(struct semaphore *sem, int val):初始化一个信号量,val参数表示初始值。
void down(struct semaphore *sem):尝试获取信号量,如果信号量值为 0,调用进程将被阻塞。
int down_interruptible(struct semaphore *sem):尝试获取信号量,如果信号量值为 0,调用进程将被阻塞,并可以被中断。
int down_trylock(struct semaphore *sem):尝试获取信号量,如果信号量值为 0,则立即返回,否则返回错误。
void up(struct semaphore *sem):释放信号量,将信号量的值加 1,并唤醒可能正在等待信号量的进程。

八、该如何选择正确的锁

当需要对共享资源进行访问和修改时,我们通常需要采用同步机制来保证数据的一致性和正确性,其中锁是最基本的同步机制之一。不同类型的锁适用于不同的场景。

互斥锁适用于需要保护共享资源,只允许一个线程或进程访问共享资源的场景。例如,当一个线程正在修改一个数据结构时,其他线程必须等待该线程释放锁后才能修改该数据结构。

读写锁适用于共享资源的读写操作频繁且读操作远大于写操作的场景。读写锁允许多个线程同时读取共享资源,但只允许一个线程写入共享资源。例如,在一个数据库管理系统中,读取操作比写入操作频繁,使用读写锁可以提高系统的并发性能。

自旋锁适用于保护共享资源的访问时间很短的场景,当线程需要等待的时间很短时,自旋锁比互斥锁的性能更好。例如,在访问共享资源时需要进行一些简单的操作,如对共享资源进行递增或递减等操作。

信号量适用于需要协调多个线程或进程对共享资源的访问的场景,允许多个线程或进程同时访问共享资源,但同时访问的线程或进程数量有限。例如,在一个并发下载系统中,可以使用信号量来限制同时下载的文件数量。

举个生活中的例子:当我们在买咖啡的时候,柜台前可能会有一个小桶,上面写着“请取走您需要的糖果,每人一颗”这样的字样。这个小桶就是一个信号量,它限制了每个人能够取走的糖果的数量,从而保证了公平性。

如果我们把这个小桶换成互斥锁,那么就可以只允许一个人在柜台前取走糖果。如果使用读写锁,那么在非高峰期的时候,多个人可以同时取走糖果,但在高峰期时只允许一个人取走。

而如果我们把这个小桶换成自旋锁,那么当有人在取走糖果时,其他人就需要一直在那里等待,直到糖果被取走为止。这样可能会造成浪费时间的情况,因为其他人可能有更紧急的事情需要处理。

九、总结

在Linux内核中,有四种常见的锁:互斥锁、读写锁、自旋锁和信号量。这些锁适用于不同的场景,开发者需要根据实际情况选择适当的锁来确保并发访问的正确性和性能。

推荐阅读



01

加入嵌入式交流群


02

嵌入式资源获取


03

STM32中断优先级详解


04

STM32下载程序新思路--使用串口下载程序


嵌入式悦翔园 专注于嵌入式技术,包括但不限于STM32、Arduino、51单片机、物联网、Linux等编程学习笔记,同时包含大量的学习资源。欢迎关注,一同交流学习,共同进步!
评论
  • 在物联网(IoT)短距无线通信生态系统中,低功耗蓝牙(BLE)数据透传是一种无需任何网络或基础设施即可完成双向通信的技术。其主要通过简单操作串口的方式进行无线数据传输,最高能满足2Mbps的数据传输速率,可轻松实现设备之间的快速数据同步和实时交互,例如传输传感器数据、低采样率音频/图像与控制指令等。低功耗蓝牙(BLE)数据透传解决方案组网图具体而言,BLE透传技术是一种采用蓝牙通信协议在设备之间实现数据透明传输的技术,设备在通信时会互相验证身份和安全密钥,具有较高的安全性。在不对MCU传输数据进
    华普微HOPERF 2025-01-21 14:20 22浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 124浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 156浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 149浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 119浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 24浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 74浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 18浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 205浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 88浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 35浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 27浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦