基于压阻式悬臂梁的低频高灵敏MEMS麦克风,助力健康监测应用

原创 MEMS 2023-05-09 00:00

据麦姆斯咨询报道,近日,日本产业技术综合研究所(AIST)和庆应义塾大学(Keio University)的研究人员组成的团队在Scientific Reports期刊上发表了题为“Highly sensitive low-frequency-detectable acoustic sensor using a piezoresistive cantilever for health monitoring applications”的论文,提出了一种基于压阻式悬臂梁的MEMS麦克风,通过设计极其容易弯曲的结构在0.1 - 250 Hz的频率范围内实现了约0.2 mPa的分辨率,这是迄今为止报道的基于MEMS的声学传感器的最高值。该文所提出的MEMS麦克风有望在可穿戴健康监测、自然灾害监测和高分辨率光声气体传感器的研发等各种应用中发挥作用。

将声波转换为电信号的麦克风在各种应用中是不可或缺的,例如消费电子产品、汽车、助听器、可穿戴健康监测、基于光声效应的气体传感以及火山爆发、泥石流和地震等自然灾害的监测。目前存在两种广泛使用的麦克风类型:传统的驻极体电容式麦克风和基于微机电系统(MEMS)的麦克风。与驻极体电容式麦克风相比,MEMS麦克风能够以更小的尺寸提供更好的性能,因此,其更适用于麦克风尺寸是关键设计参数的应用,例如智能手机、入耳式耳机、可穿戴设备和气体传感设备等。

决定麦克风性能的一个主要因素是信噪比(SNR),这也表示麦克风可以检测到的最小声压。近年来,人们在提高MEMS麦克风的信噪比方面已经做出了显著的努力,传统MEMS麦克风的信噪比高达74 dB,相当于可检测到的最小声压约为0.32 mPa。值得注意的是,传统MEMS麦克风的高信噪比仅在可听频率范围(20 Hz – 20 kHz)内获得,这是大多数消费电子和汽车应用的测量目标。

然而,在低频范围(<20 Hz)内具有高信噪比的MEMS麦克风的需求最近有所增加。例如,与自然灾害有关的声音频率通常在次声频率范围内(0.01 – 20 Hz)。在健康监测应用中,心音的期望频率范围为10 – 250 Hz,“地震心动图”的期望频率为1 – 30 Hz。此外,与呼吸活动有关的声音的频率分量可能低于1 Hz。在基于非谐振光声的气体传感器中,由于光声压随着入射光调制频率的降低而增加,因此提高低频声音探测的信噪比可使这些传感器的信噪比提高。不幸的是,对于低于20 Hz的频率,传统MEMS麦克风的信噪比会随着声音频率的降低而显著下降。

基于此,本项研究工作旨在实现一种在0.1 – 250 Hz的低频范围内具有高信噪比的MEMS麦克风。所提出的MEMS麦克风基于一种纳米级厚度的压阻式悬臂梁,如图1A所示。当声压施加到悬臂梁上时,悬臂梁会弯曲,从而导致电阻发生变化。因此,通过测量悬臂梁的电阻即可检测声压。在之前的研究中,压阻式悬臂梁被用于测量压差和低频声音信号。这些悬臂梁即使在低于1 Hz的频率下也能保持平坦的频率响应。然而,之前的压阻式悬臂梁的信噪比仍然较差,这是由于其对压差(约20 mPa)的响应分辨率较低造成的。在本项研究工作中,通过设计一种具有大承压平板和窄长悬臂铰链的悬臂梁,MEMS麦克风可以实现对声压响应的高灵敏度,并且在1 Hz频率下的最小可检测声压低至200 μPa。本研究探讨了所提出的MEMS麦克风的设计、制造和性能评估。此外,本研究还演示了使用原型器件测量心音。

基于压阻式悬臂梁的MEMS麦克风的设计参数如图1B所示。MEMS麦克风的制造工艺流程如图2所示。厚度为0.34/0.4/250 μm的绝缘体上硅(silicon-on-insulator,SOI)晶圆被用于制造MEMS麦克风。制造的悬臂梁的SEM图像如图1C所示。悬臂梁的初始电阻约为5.4 kΩ。


图1 基于压阻式悬臂梁的MEMS麦克风设计原理及设计参数


图2 基于压阻式悬臂梁的MEMS麦克风制造工艺流程

研究人员使用图3A所示的实验设置评估了制造的基于压阻式悬臂梁的MEMS麦克风响应声波的灵敏度和信噪比。实验设置如图3B所示。为了进行对比测量,将制造的MEMS麦克风和参考麦克风(丹麦奈鲁姆Brüel & Kjær的4955型)放置在与扬声器(日本东京Kenwood Corp.的KFC-XS174S)相同的1厘米距离处。在1 - 1000 Hz的频率范围内,所测得的MEMS麦克风的灵敏度及其噪声谱密度(NSD)如图3C所示。图3D显示了推导出的MEMS麦克风的信噪比。在1 – 250 Hz的频率范围内,信噪比约为80 dB/Pa。此外,研究人员通过改变施加的声压和测量悬臂梁电阻的变化来评估MEMS麦克风输出的线性度。在测量过程中,施加声音的频率固定为30 Hz,施加在扬声器上的电压在0.5 - 10 V范围内变化。测量数据的示例如图3E所示。声压是直接从参考麦克风的测量信号中计算出来的。悬臂梁的电阻变化与施加声压的关系如图3F所示。


图3 评估MEMS麦克风对声波的灵敏度和信噪比的实验设置及测量结果

研究人员使用气压差进行了另一次测量,以研究基于压阻式悬臂梁的MEMS麦克风在低于5 Hz频率下的响应(图4A)。该MEMS麦克风和参考压力传感器的测量结果及其频谱(采用快速傅里叶变换获得)如图4B所示。结果表明,基于压阻式悬臂梁的MEMS麦克风即使在低频范围内也具有高灵敏度,其结果与声波实验(图3)的结果一致。


图4 评估MEMS麦克风在低频下性能的实验设置及测量结果

研究人员使用制造的压阻式悬臂梁来测量心音,以演示所提出的MEMS麦克风在健康监测中的应用。将制造的压阻式悬臂梁芯片附着在受试者(37岁男性)胸部的3d打印夹具上,如图5A所示。持续50秒测量的原始数据如图5B所示。在15-17秒的持续时间内记录的心音的小波尺度谱图和放大视图如图5C和5D所示。图5E显示了心音单个周期的放大视图。从小波尺度谱图来看,第一心音(S1)和第二心音(S2)的主要频率范围分别为7 - 100 Hz和20 - 45 Hz。此外,记录信号的高信噪比有助于计算每次心跳的S1峰值时间。通过此计算可以得到受试者每次心跳的心率,如图5F所示。基于上述测量结果,所提出的基于压阻式悬臂梁的MEMS麦克风是可穿戴心音监测设备的一种理想选择。


图5 使用MEMS麦克风原型测量受试者的心音及测量结果

综上所述,本项研究工作调查了基于MEMS的麦克风设计,这类MEMS麦克风可以在0.1 - 250 Hz的频率范围内实现约0.2 mPa的分辨率,这是迄今为止报道的基于MEMS的声学传感器的最高值。本论文所提出的MEMS麦克风的高性能是由压阻式悬臂梁实现的,该悬臂梁的厚度为340 nm,并具有一个300 μm宽的承压平板和两个10 μm宽、200 μm长的悬臂铰链。这种极其容易弯曲的结构使悬臂梁获得了超过10⁻² Pa⁻¹的灵敏度,这比以前具有类似厚度的悬臂梁设计高出40倍。测量结果表明,与参考商用麦克风相比,这款基于压阻式悬臂梁的MEMS麦克风在检测低频声音方面具有更出色的信噪比。研究人员使用这款MEMS麦克风展示了信噪比高达58 dB的心音测量。这款MEMS麦克风有望在可穿戴健康监测、自然灾害监测和高分辨率光声气体传感器的研发等各种应用中发挥作用。

论文信息:
https://doi.org/10.1038/s41598-023-33568-3

延伸阅读:
《MEMS扬声器专利态势分析-2022版》
《MEMS扬声器期刊文献检索与分析-2022版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 58浏览
  • 影像质量应用于多个不同领域,无论是在娱乐、医疗或工业应用中,高质量的影像都是决策的关键基础。清晰的影像不仅能提升观看体验,还能保证关键细节的准确传达,例如:在医学影像中,它对诊断结果有着直接的影响!不仅如此,影像质量还影响了:▶ 压缩技术▶ 存储需求▶ 传输效率随着技术进步,影像质量的标准不断提高,对于研究与开发领域,理解并提升影像质量已成为不可忽视的重要课题。在图像处理的过程中,硬件与软件除了各自扮演着不可或缺的基础角色,有效地协作能够确保图像处理过程既高效又具有优异的质量。软硬件各扮演了什么
    百佳泰测试实验室 2025-01-03 10:39 65浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 183浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 97浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 93浏览
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 67浏览
  • 前言近年来,随着汽车工业的快速发展,尤其是新能源汽车与智能汽车领域的崛起,汽车安全标准和认证要求日益严格,应用范围愈加广泛。ISO 26262和ISO 21448作为两个重要的汽车安全标准,它们在“系统安全”中扮演的角色各自不同,但又有一定交集。在智能网联汽车的高级辅助驾驶系统(ADAS)应用中,理解这两个标准的区别及其相互关系,对于保障车辆的安全性至关重要。ISO 26262:汽车功能安全的基石如图2.1所示,ISO 26262对“功能安全”的定义解释为:不存在由于电子/电气系统失效引起的危害
    广电计量 2025-01-02 17:18 159浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 88浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 63浏览
  • Matter加持:新世代串流装置如何改变智能家居体验?随着现在智能家庭快速成长,串流装置(Streaming Device,以下简称Streaming Device)除了提供更卓越的影音体验,越来越多厂商开始推出支持Matter标准的串流产品,使其能作为智能家庭中枢,连结多种智能家电。消费者可以透过Matter的功能执行多样化功能,例如:开关灯、控制窗帘、对讲机开门,以及操作所有支持Matter的智能家电。此外,再搭配语音遥控器与语音助理,打造出一个更加智能、便捷的居家生活。支持Matter协议
    百佳泰测试实验室 2025-01-03 10:29 69浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 93浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦