5G的调制方式,到底是怎么实现的?

电子工程世界 2020-07-10 00:00

说到调制,我想很多同学马上会联想到这些关键词:BPSK、QPSK、调幅、调相、QAM、星座图……



众所周知,调制和解调是通信基本业务流程中的重要组成部分。没有它们,我们的移动通信根本无法实现。


那么,究竟什么是调制?为什么要调制?5G又是怎么调制的呢?


接下来,我们逐一介绍。





调制是做什么用的呢?


让我们看一下生活中的一个例子:

我们每天都在出行。出行的时候,我们会根据行程选择适合的交通工具。


乘坐不同的交通工具,出行的速度也会有快有慢。

整个过程,大概就是这样一个模型:


实际上,通信系统和这个模型类似。上面的出行模型,是把人从出发点运输到目的地。而通信系统,是把数据信号从发送端传输到接收端。

我们进行以下转换:


就可以类比出一个简单的通信模型:


看出来了吧?“调制”,就像为信号找一个交通工具,让它载着信息穿过信道到达目的地。

我们知道,在无线信道中,信号是以电磁波的形式传递的。

那么,电磁波怎么来传递信息呢?

我们先来举一个“用水果传递信息”例子。

例如,我们要传递0和1,可以让苹果代表0,香蕉代表1。

我们发送给接收端,接收方收到后一看是苹果就知道是发送的是0,一收到香蕉,就知道发送的是1。


换一种方式,如果只能用苹果来传递信息呢?

我们约定让红苹果代表0,绿苹果代表1。

接收方一看是红苹果,就知道是发送的是0。收到绿苹果,就知道发送的是1。


再换一种方式。如果只有红苹果,怎么传递信息呢?

我们可以用大的红苹果来代表0,小的红苹果代表1。一看是大红苹果,就知道是发送的是0。收到小红苹果,就知道发送的是1。


在这个过程中,我们其实用的是水果的种类、颜色、大小这3个特征来传递信息的。

类似的,电磁波可以用正弦波来描述。一个正弦波也有3大特征,幅度,相位,频率。我们可以利用电磁波的这3大特征来传递信息。

下面的公式(1),描述了一个正弦波信号:



所谓调幅、调频、调相,就是下图的样子:


看出来了没?0和1,被“调”进了不同的电磁波波形之中。

5G速度那么快,它是怎么调制的呢?

在3GPP协议(TS 38.201)中,定义了5G支持的调制方式如下:


按照使用的载波的特征的不同,5G采用的调制方式可以分为两大类:


  • 载波的相位变化,幅度不变化:π/2-BPSK, QPSK。这就是前面说的PSK(Phase-Shift keying相移键控)。

  • 载波的相位和幅度都变化:16QAM, 64QAM,256QAM。这一类专业名词叫做QAM(Quadrature Amplitude Modulation,正交振幅调制)





       星座图        


各种调制方式之间的差异,还是不太容易理解。


想一想,为什么我们能很容易区分各种水果的不同?(什么是苹果,什么是香蕉,什么是红苹果,什么是大苹果。)

这是因为我们见过实物,看到过不同状态的水果。

那么,我们能不能把调制方式也用图表示起来呢?

可以。

为了直观的表示各种调制方式,我们引入一种叫做星座图的工具。星座图中的点,可以指示调制信号的幅度和相位的可能状态。

 

BPSK定义了2种相位,分别表示0和1,因此BPSK可以在每个载波上调制1比特的信息。


π/2-BPSK是BPSK在序列的奇数位时调制信号相位偏移π/2,序列的偶数位时和BPSK调制信号的相位一样,也就是π/2-BPSK定义了4种相位来表示0和1。


QPSK全称是正交相移键控,它定义了4个不同的相位,分别表示00、01、10、11,因此QPSK可以在每个载波上调制2比特的信息。


16QAM:一个符号代表4bit。


64QAM:一个符号代表6bit。



256QAM:一个符号代表8bit。

来个动图,帮助理解:


QAM示意图(来自cisco
从星座图中可以看出PSK调制信号的幅度不变,相位有变化。QAM调制信号的幅度和相位在变化。

正是因为每个符号能代表的bit数不断提升,使得携带的信息量提升,最终让这个“交通工具”能显著提升速率。

可能大家觉得5G好像也不是很难的样子嘛。既然我们已经有了通信模型和星座图两大法宝,是不是可以自己打造一套下一代通信系统出来呢?

Hoho,你以为256QAM就是那么简单就搞出来的吗?

上图!

3GPP 38.211协议中定义的5G调制方式的映射关系

懵圈了!有木有? 

通信搞到最后,都是数学!




   调制和解调原理   


我们再简单讲一下调制和解调的原理。

5G的各种调制方式,都可以使用IQ调制解调来实现。

我们从公式1出发,进行各种神奇的公式转换。


将公式2画成框图,这个就是IQ调制: 


解调是把接收到的调制信号提取出来的过程,调制信号经过解调转换为原始的信号。解调的过程可以通过下面的公式来解释。

通过公式3可以看到,接收信号在乘以对应相位的载波后,进行积分,可以得到原始的信号,将公式3画成框图,这个就是IQ解调。


将2个框图结合起来,我们下面给出IQ调制和解调的框图。


IQ调制可以用复数的形式进行理解。

调制的公式描述:


解调的公式描述:


 对应的我们给出复数形式的框图。


这个框图搭配上前面3GPP协议里面的5G调制映射关系,就是一个较为完整的5G的调制和解调过程。

是不是彻底懵圈啦?调制解调,从入门到放弃! 

来源:中兴文档

7月28日晚间8点直播:TI DLP®技术在汽车上的创新及全新应用方案


现在预约,观看有礼~

直播看点:10年DLP开发经验工程师坐阵、最新DLP 汽车系列产品及方案、革新的动态照地灯方案、增强现实抬头显示AR-HUD设计、DLP学习资源



推荐阅读

2020年全球最值得关注的100家半导体公司:18家中国公司上榜

高考中的信号屏蔽,是如何实现的?

Mobileye的近忧与远虑

用一只灯泡,百米外就能偷听对话!是物联网的深层黑洞还是黑科技?

芯片卡的江湖故事

由于微信公众号近期改变了推送规则,如果您想经常看到我们的文章,可以在每次阅读后,在页面下方点一个「赞」或「在看」,这样每次推送的文章才会第一时间出现在您的订阅列表里。

或将我们的公众号设为星标。进入公众号主页后点击右上角「三个小点」,点击「设为星标」,我们公众号名称旁边就会出现一个黄色的五角星(Android 和 iOS 用户操作相同)。


聚焦行业热点, 了解最新前沿
敬请关注EEWorld电子头条
http://www.eeworld.com.cn/mp/wap
复制此链接至浏览器或长按下方二维码浏览
以下微信公众号均属于
  EEWorld(www.eeworld.com.cn)
欢迎长按二维码关注!

EEWorld订阅号:电子工程世界
EEWorld服务号:电子工程世界福利社
电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 88浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 119浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 26浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 74浏览
  • 在物联网(IoT)短距无线通信生态系统中,低功耗蓝牙(BLE)数据透传是一种无需任何网络或基础设施即可完成双向通信的技术。其主要通过简单操作串口的方式进行无线数据传输,最高能满足2Mbps的数据传输速率,可轻松实现设备之间的快速数据同步和实时交互,例如传输传感器数据、低采样率音频/图像与控制指令等。低功耗蓝牙(BLE)数据透传解决方案组网图具体而言,BLE透传技术是一种采用蓝牙通信协议在设备之间实现数据透明传输的技术,设备在通信时会互相验证身份和安全密钥,具有较高的安全性。在不对MCU传输数据进
    华普微HOPERF 2025-01-21 14:20 22浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 156浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 124浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 35浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 20浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 27浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦