了解RF噪声系数规范

原创 摩尔学堂 2023-05-08 09:58

仔细查看 RF 噪声系数的定义并讨论一些细微之处,以帮助避免对该规范的错误解释。

噪声系数定义和噪声因数方程

电路的噪声因数 (F) 可定义为:

等式 1。

在哪里:

  • No 是输出端的总噪声,包括电路内部噪声源的影响和来自源阻抗的噪声

  • i 是源阻抗在电路输入端产生的噪声

  • G是阶段的功率增益

虽然这个解释是正确的,而且实际上在一些参考资料中也提供了类似的解释,例如Paul R. Gray广泛使用的 教科书“模拟集成电路的分析与设计”第 4 版,但它并没有提供所有的细节噪声系数定义。根据IEEE 定义,N i 是源电阻器在 T  = 290 K°(或 16.85 °C)温度下的可用热噪声功率。这个温度比舒适的室温要低一点;但是,有时在 RF 工作中将其称为室温。

此外,IEEE 定义指出,No 设备输出端的可用噪声功率,G 是设备的可用功率增益。这里的关键点是规范的参考温度 T  = 290 K°,以及用于描述方程式 N i、 N o和 G 的所有三个参数的描述符“可用”。在本文的其余部分,我们将详细讨论“T  = 290 K 时的可用噪声功率”的含义。

最大可用噪声功率

热激发电荷载流子的随机运动表现为电阻器中的噪声。噪声电阻器可以通过添加与无噪声电阻器串联的噪声电压源来建模,如下图 1 所示。

  

图 1. 噪声电阻示例图以及添加与无噪声电阻串联的噪声电压源。 

噪声电压源的PSD(功率谱密度)2个¯=4个 , 在哪里:

  • k 是玻尔兹曼常数 (1.38 × 10 -23  Joules/Kelvin)

  • T 是开尔文温度

  • B 是考虑的带宽(赫兹)

在噪声系数定义中,N i 是源电阻的最大可用噪声功率。现在的问题是,图 1(b) 中的电路可以提供的最大噪声功率是多少?根据基本电路理论,我们知道当负载电阻等于源电阻时传输的功率最大。因此,可以使用以下电路(图 2)找出源电阻 R S的最大可用噪声功率。 

图 2. 用于查找源电阻器最大可用噪声功率的电路图。

请记住,我们 在上图中使用了噪声源的RMS(均方根)值。由于一半的噪声电压出现在负载两端,因此传输到匹配负载的噪声功率 R L  = R S可以通过以下公式找到:

等式 2。

这是噪声系数计算的重要结果。请注意,可用噪声功率与电阻值无关。无论是 1 mΩ 电阻还是 1 MΩ 电阻,可用的噪声功率都是 kTB。在 1 Hz 带宽中,可用噪声功率为 kT。噪声系数定义基于 T  = 290 K 时的可用噪声功率 。以 dB表示 kT 0时,此参考温度下的可用噪声功率为 -174 dBm/Hz,计算如下:

噪声系数指定添加噪声的相对量

由于噪声系数定义基于 N i  = kT 0 B,它指定了相对于 N i添加到信号中的噪声的相对

量。考虑我们在上一篇文章中推导出的以下噪声系数方程:

这里,No (source) 是源于源阻抗的输出噪声的一部分;No (added) 是电路本身产生的输出噪声的一部分——不包括源电阻贡献。注意 N o(source)  = kT 0 BG,我们得到等式 3:

等式 3。

为了更好地形象化上述等式的噪声项,请考虑图 3 中的下图,有时称为“噪声线”。

  

图 3. 显示噪声线的图。

在上图中,总输出噪声 No 相对于源电阻温度 T 绘制。如果 R S 无噪声(或 T = 0 K),输出端出现的唯一噪声将是被测设备或 No o(added)当我们提高 R S的温度时,它的噪声贡献会增加。对应于 T = T 0的噪声系数度量实际上指定了 R S 在 T 0时贡献的输出噪声(即 kT 0 BG)与被测设备的输出噪声 (No (added) ) 之比。例如,如果系统的噪声系数为 F = 2(或 NF = 3 dB),我们知道 No (added) 等于 kT 0 BG。

如图所示,R S 噪声与 No (added)的比值 不是常数,而是随 T 而变化。因此,如果 R S 处于 T 0以外的温度,我们不能直接使用噪声系数方程来计算找到输出噪声。 相反,我们应该首先找到来自 DUT(被测设备)的噪声,加上感兴趣温度下 来自 R S的噪声,最后计算总输出噪声。

我们还可以通过将分数的分子和分母除以级的功率增益,根据输入参考噪声值来表达等式 3。这产生了等式 4:

等式 4。

在这个等式中,N i(added) 是由 DUT 贡献的输入参考噪声,N i 是源在 290 K 时的可用噪声功率。同样,如果 F = 2,则输入参考噪声由DUT 等于 N  = kT 0 B。让我们看一个例子来阐明这些概念。

示例:使用噪声系数方程

放大器的噪声系数、带宽和增益分别为:

  • 噪声系数 = 2.55 分贝 

  • B = 10 兆赫

  • 增益 = 5.97 分贝

假设可用输入噪声为 kT A B,找出两种不同情况下的输出噪声:1 - T  = 290 K 和 2 - T  = 150 K。 

我们首先找到噪声系数和增益的线性值: 

由于噪声系数的定义假设输入噪声是 T = 290 K 时的可用噪声功率,我们可以直接从等式 1 求出该温度下的输出噪声:

以分贝表示右侧,我们有:

对于 T  = 150 K,我们不能直接使用噪声系数方程。然而,噪声系数方程可用于计算系统产生的噪声。将 N  = kT 0 B 代入等式 4,系统产生的输入参考噪声为: 

将该值乘以系统增益 G,即可得到总输出噪声功率。在下面的等式中,我将 T A写成 T 0 以简化计算:

以分贝表示右侧,我们有:

如果不注意噪声系数的定义,可能会将 N  = k × 150 × B 代入等式 1,这会产生不正确的结果 No  -98.34 dBm。 

物理温度或噪音温度

在上面的讨论中,我们强调了源电阻 R S的物理温度对我们的 NF 计算的影响。通常情况下,驱动点阻抗 (R S ) 与 DUT 处于相同的物理温度;然而,电路接收到的输入噪声功率高于 kT 0 B。这通常发生在级联系统中,信号链中的每个模块都会增加本底噪声。因此,级联中下游级的输入噪声通常超过 kT 0 B。在这些情况下,我们也无法通过直接应用噪声系数方程来计算输出噪声电平。相反,我们可以先使用 NF 方程来计算电路产生的噪声 (N i(added)),然后使用该信息和输入噪声电平来计算总输出噪声。 此外,定义输入噪声的等效噪声温度 T e也很有帮助。这是可用热噪声功率 (kT e B) 等于输入噪声功率时的温度。若输入噪声功率为N 1,其等效噪声温度为:

噪声系数和等效噪声温度是组件噪声特性的可互换表征。在下一篇文章中,我们将查看使用噪声温度概念的示例。

噪声系数指定 SNR 劣化

噪声系数是电路引起的SNR(信噪比)退化的直接量度。这个说法是正确的;然而,它值得更多的解释。让我们再考虑一次上面讨论的例子。我们假设系统的噪声系数和增益分别为 NF = 2.55 dB 和增益 = 5.97 dB,并假设输入信号功率为 -40 dBm。当 R S 为 T  = 290 K 时,输入噪声功率为: 

从示例的结果中,我们知道输出噪声功率为 -95.48 dBm。图 4 总结了该示例输入和输出端的信号和噪声功率。

 

图 4. 前面示例的输入和输出端的信号和噪声功率汇总。

输出信号功率由输入信号乘以放大器的功率增益得到。图 4 还提供了输入和输出 SNR,以及 SNR 退化。请注意,SNR i  / SNR o的比值 等于噪声系数 NF = 2.55 dB,这并不奇怪,因为我们知道这个比值实际上是噪声系数的定义。但是,对于 T A  = 150 K的情况呢?在这种情况下,输入噪声为 N  = -106.86 dBm。图 5 总结了前面示例的结果。

  

图 5. 上述示例的另一个结果汇总。

如您所见,SNR 退化 (SNR  / SNR o ) 现在大于 NF。这是因为输入噪声低于标准值,使得放大器的噪声贡献更加显着。因此,当输入噪声为 kT 0 B时,噪声系数决定了 SNR 的退化。例如,如果一个电路的噪声系数为 7 dB,并且该模块的输入噪声功率为 kT o B,则输出端的 SNR该块的 7 dB 小于输入 SNR。



从基础到高级的ADC讲座,将涵盖高速ADC设计的原理、传统架构和最先进的设计。第一部分首先回顾了ADC的基本知识,包括采样、开关电容和量化理论。接下来,介绍了经典ADC架构的基础和设计实例,如闪存、SAR和流水线ADC。然后,本教程将对混合型ADC架构进行总体概述,这就结束了第一部分。在第二部分,首先描述了ADC的度量。然后,介绍混合或非混合架构的各种先进设计。该教程最后将以数字辅助解决技术结束。

>>>点击图片了解课程详情!


--------------------


今天小编带来了:ISSCC2023套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。

ISSCC2023完整资料领取方式如下   
识别关注下方公众号
公众号对话框输入 1425 
由于公众号后台资料容量有限
每份资料有效期为30天,过期会被更新删除
资料仅供个人学习使用,禁止分享与转发!
大家如果需要,请及时下载!

1、深入理解SerDes(Serializer-Deserializer)之一

2、深入理解SerDes(Serializer-Deserializer)之二

3、科普:深入理解SerDes(Serializer-Deserializer)之三

4、资深工程师的ESD设计经验分享

5、干货分享,ESD防护方法及设计要点!

6、科普来了,一篇看懂ESD(静电保护)原理和设计!

7、锁相环(PLL)基本原理 及常见构建模块

8、当锁相环无法锁定时,该怎么处理的呢?

9、高性能FPGA中的高速SERDES接口

10、什么是毫米波技术?它与其他低频技术相比有何特点?

11、如何根据数据表规格算出锁相环(PLL)中的相位噪声

12、了解模数转换器(ADC):解密分辨率和采样率

13、究竟什么是锁相环(PLL)

14、如何模拟一个锁相环

15、了解锁相环(PLL)瞬态响应

16、如何优化锁相环(PLL)的瞬态响应

17、如何设计和仿真一个优化的锁相环

18、锁相环(PLL) 倍频:瞬态响应和频率合成

19、了解SAR ADC

20、了解 Delta-Sigma ADC

21、什么是数字 IC 设计?

22、什么是模拟 IC 设计?

23、什么是射频集成电路设计?

24、学习射频设计:选择合适的射频收发器 IC

25、连续时间 Sigma-Delta ADC:“无混叠”ADC

26、了解电压基准 IC 的噪声性能

27、数字还是模拟?I和Q的合并和分离应该怎么做?

28、良好通信链路性能的要求:IQ 调制和解调

29、如何为系统仿真建模数据转换器?

30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)

31、使用有效位数 (ENOB) 对 ADC 进行建模

32、以太网供电 (PoE) 的保护建议

33、保护高速接口的设计技巧

34、保护低速接口和电源电路设计技巧

35、使用互调多项式和有效位数对 ADC 进行建模

36、向 ADC 模型和 DAC 建模添加低通滤波器

37、揭秘芯片的内部设计原理和结构

38、Delta-Sigma ADCs中的噪声简介(一)

39、Delta-Sigma ADCs中的噪声简介(二)

40、Delta-Sigma ADCs 中的噪声简介(三)

41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)

42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)

43、放大器噪声对 Delta-Sigma ADCs 的影响(一)

44、放大器噪声对 Delta-Sigma ADCs 的影响(二)

45、参考电压噪声如何影响 Delta Sigma ADCs

46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声

47、时钟信号如何影响精密ADC

48、了解电源噪声如何影响 Delta-Sigma ADCs

49、运算放大器简介和特性

50、使用 Delta-Sigma ADCs 降低电源噪声的影响

51、如何设计带有运算放大器的精密电流泵

52锁定放大器的基本原理

53了解锁定放大器的类型和相关的噪声源

54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术

55、干货!《实用的RFIC技术》课程讲义

56、如何在您的下一个 PCB 设计中消除反射噪声

57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!   

58、帮助你了解 SerDes!                                    

往期精彩课程分享

1、免费公开课ISCAS 2015 :The Future of Radios_ Behzad Razavi

2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)

3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)

4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs

5免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)

6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)

7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动

8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi

9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块

10、免费公开课:ISSCC2020-小数N分频数字锁相环设计

11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)

12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础

13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础

14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)

15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)

16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe

17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)





专注于半导体人才培训,在线学习服务平台!


人才招聘服务平台

摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论
  • 前言近年来,随着汽车工业的快速发展,尤其是新能源汽车与智能汽车领域的崛起,汽车安全标准和认证要求日益严格,应用范围愈加广泛。ISO 26262和ISO 21448作为两个重要的汽车安全标准,它们在“系统安全”中扮演的角色各自不同,但又有一定交集。在智能网联汽车的高级辅助驾驶系统(ADAS)应用中,理解这两个标准的区别及其相互关系,对于保障车辆的安全性至关重要。ISO 26262:汽车功能安全的基石如图2.1所示,ISO 26262对“功能安全”的定义解释为:不存在由于电子/电气系统失效引起的危害
    广电计量 2025-01-02 17:18 218浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 155浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 159浏览
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 137浏览
  • 影像质量应用于多个不同领域,无论是在娱乐、医疗或工业应用中,高质量的影像都是决策的关键基础。清晰的影像不仅能提升观看体验,还能保证关键细节的准确传达,例如:在医学影像中,它对诊断结果有着直接的影响!不仅如此,影像质量还影响了:▶ 压缩技术▶ 存储需求▶ 传输效率随着技术进步,影像质量的标准不断提高,对于研究与开发领域,理解并提升影像质量已成为不可忽视的重要课题。在图像处理的过程中,硬件与软件除了各自扮演着不可或缺的基础角色,有效地协作能够确保图像处理过程既高效又具有优异的质量。软硬件各扮演了什么
    百佳泰测试实验室 2025-01-03 10:39 137浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 173浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 290浏览
  • 国际标准IPC 标准:IPC-A-600:规定了印刷电路板制造过程中的质量要求和验收标准,涵盖材料、外观、尺寸、焊接、表面处理等方面。IPC-2221/2222:IPC-2221 提供了用于设计印刷电路板的一般原则和要求,IPC-2222 则针对高可靠性电子产品的设计提供了进一步的指导。IPC-6012:详细定义了刚性基板和柔性基板的要求,包括材料、工艺、尺寸、层次结构、特征等。IPC-4101:定义了印刷电路板的基板材料的物理和电气特性。IPC-7351:提供了元件封装的设计规范,包括封装尺寸
    Jeffreyzhang123 2025-01-02 16:50 198浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 164浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 119浏览
  • Matter加持:新世代串流装置如何改变智能家居体验?随着现在智能家庭快速成长,串流装置(Streaming Device,以下简称Streaming Device)除了提供更卓越的影音体验,越来越多厂商开始推出支持Matter标准的串流产品,使其能作为智能家庭中枢,连结多种智能家电。消费者可以透过Matter的功能执行多样化功能,例如:开关灯、控制窗帘、对讲机开门,以及操作所有支持Matter的智能家电。此外,再搭配语音遥控器与语音助理,打造出一个更加智能、便捷的居家生活。支持Matter协议
    百佳泰测试实验室 2025-01-03 10:29 143浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 113浏览
  • 从无到有:智能手机的早期探索无线电话装置的诞生:1902 年,美国人内森・斯塔布菲尔德在肯塔基州制成了第一个无线电话装置,这是人类对 “手机” 技术最早的探索。第一部移动手机问世:1938 年,美国贝尔实验室为美国军方制成了世界上第一部 “移动” 手机。民用手机的出现:1973 年 4 月 3 日,摩托罗拉工程师马丁・库珀在纽约曼哈顿街头手持世界上第一台民用手机摩托罗拉 DynaTAC 8000X 的原型机,给竞争对手 AT&T 公司的朋友打了一个电话。这款手机重 2 磅,通话时间仅能支持半小时
    Jeffreyzhang123 2025-01-02 16:41 167浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦