四足机器人:步态设计

面包板社区 2023-05-06 20:12

0、步态规划


四足机器人控制当中,步态是至关重要的一项。我们可以简单理解成四足机器人运动过程中各腿的状态,在这套设计方案中,我们对步态的规划主要分成两大主要部分,即接触状态和周期函数。而步态规划的目的,就是创建一个关于的足端接触状态的周期函数。



1、接触状态


四足机器人行进过程中,根据足端与地面是否发生接触,我们可以规定各条腿的两种接触状态,即接触(contact)与摆动(swing)


总控制器会根据步态规划给出的状态,移交至对应的控制器去处理,即摆动腿控制器(swing leg controll),接触腿控制器(contact leg control)。


对于这两种状态,可以简单地用一个布尔类型的值s来定义,即

对于周期性的步态规划,我们可以用下标Φ来进行区分,可以写成:



2、步态周期


四足机器人的运动归根到底都是周期运动,我们无须量化机器人运动的整个过程,因此如何量化定义一个完整的步态周期显得极为重要,在此我们使用基于时间的周期函数,定义一个基准相位值,公式如下:

其中,


  • t:当前运行时间

  • t0:当前周期开始时间

  • T:一个步态周期


同样我们可以利用取余的方法来简化上述周期函数,两者并无实质的区别:

其中


  • %为取余运算

  • t为当前运行时间


对于相同类型的周期信号,我们可以利用相位差来表征周期函数之间的差别,因此有了基准相位函数之后,我们就可以利用其来定义各条腿的相位,如下式:

其中,Φi,offset为第条腿与基准相位的相位差。



3、周期函数效果演示


这里简单利用一个线性函数进行演示

取a=1,b=1,其图像随时间变化如下:


利用周期函数对时间进行调整,可以使其变成周期函数,设定周期为2s,时长为10s,其图像如下:



从图像可以看出,刚好为5个周期,一个周期为一个尖角。接下来,为更好的观察各曲线相位,我们设定该直线函数的3个周期,其相位差(offset)分别为[0,1,3,4],图像如下:



从上图可以看出,我们的“尖角”会根据相位差,向前或向后平移。此方法对所有函数均适用,以下为利用sin函数进行的测试效果:


测试用代码:


import numpy as npimport matplotlib.pyplot as plt

T = 2*np.pit = np.linspace(0, 10, 100)offset = [0, 0.5*np.pi, np.pi, 1.5*np.pi]# offset = [0]*4phi_offset = []

def linear_fun(x):    return x+1

def linear_draw():    plt.title('linear_function')    plt.plot(t, linear_fun(t))

def single_period():    plt.title('period_linear_function')    plt.plot(t, linear_fun(t % T))

def period_draw():    plt.title('period_ot')    for i in range(len(offset)):        phi_offset.append(np.sin((t+offset[i]) % T))        plt.plot(t, phi_offset[i], label='%f' % offset[i])

period_draw()plt.legend()plt.show()



4、步态规划


因为我们的四足机器人足端,是在不停地与地面接触,悬空(摆动),所以这里说的步态规划,其实指的的一个连续(离散)时间上的接触序列。


我们以一条腿为例,本质上,可以看作是一个周期性的,用于生成各腿接触状态的阶跃函数。其输入值为时间,输出值为0或1,函数可以表示成如下:

其中t=t%T为时间的周期函数,其图像如下所示。


可以看出,步态规划器给出的是一段由0-1组成的接触序列。接下来加上相位关系。以tort步态为例,其相位为[0, 0.5, 0.5, 0],步态规划随时间的图像如下所示:



测试代码:


import numpy as npimport matplotlib.pyplot as plt
T = 1t = np.linspace(0, 5, 100)states = []FR = []FL = []BR = []BL = []
phi_offset = [FR, FL, BR, BL]offset = [0, 0.5, 0.5, 0]

def step(t):    if t < 0.5*T:        state = 0    else:        state = 1    return state

def draw():    for time in t:        for i in range(len(offset)):            phi_offset[i].append(step((time+offset[i]) % T))
   plt.subplot(411)    plt.ylabel('FR')    plt.plot(t, phi_offset[0])
   plt.subplot(412)    plt.ylabel('FL')    plt.plot(t, phi_offset[1])
   plt.subplot(413)    plt.ylabel('BR')    plt.plot(t, phi_offset[2])
   plt.subplot(414)    plt.ylabel('BL')    plt.plot(t, phi_offset[3])

fig = plt.figure()draw()fig.tight_layout()plt.show()



5、总结


综上,我们利用阶跃函数得到一串由0和1组成的序列,来表示四足机器人足端与地面的接触状态。根据不同的接触状态,再交由其他运动控制器进行控制,如接触状态,就由mpc模型计算出所需要的反作用力;而摆动状态,就交由摆动控制模块计算足端的摆动轨迹


最后根据需要的不同的行走姿态,确定个条腿之间的相位差,实现各腿的协同运动。至此我们完成了对四足机器人步态的数学建模,更多内容可以点击主页查看,点点关注,后续会有更多相关内容。


END


免费申请开发板


🤞长按图片 扫码申请🤞

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 21浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 95浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 46浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 166浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 179浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 147浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 121浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 334浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 161浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 108浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦