冷知识:达夫设备(Duff's Device)效率真的很高吗?

嵌入式资讯精选 2020-07-09 00:00

相信大家写业务逻辑的时候,都是面向if、elseforwhileswitch编程。但是你见过switch嵌套do..while吗?

先上代码

void send( int * to, int * from, int count)
{
    int n = (count + 7 ) / 8 ;
    switch (count % 8 ) {
    case 0 :    do { * to ++ = * from ++ ;
    case 7 :          * to ++ = * from ++ ;
    case 6 :          * to ++ = * from ++ ;
    case 5 :          * to ++ = * from ++ ;
    case 4 :          * to ++ = * from ++ ;
    case 3 :          * to ++ = * from ++ ;
    case 2 :          * to ++ = * from ++ ;
    case 1 :          * to ++ = * from ++ ;
           } while ( -- n >    0 );
    }  
}

咋的一看,这啥玩意啊,switch/while 这组合能编译通过吗?您可别怀疑,还真能。这个就是达夫设备(Duff's Device)

什么是达夫设备

百度百科说法如下:

在计算机科学领域,达夫设备(英文:Duff's device)是串行复制(serial copy)的一种优化实现,通过汇编语言编程时一常用方法,实现展开循环,进而提高执行效率。这一方法据信为当时供职于卢卡斯影业的汤姆·达夫于1983年11月发明,并可能是迄今为止利用C语言switch语句特性所作的最巧妙的实现。

达夫设备是一个加速循环语句的C编码技巧。其基本思想是--减少循环测试的执行次数。

简单讲下背景

时间要回到1983年,那是一个雨过天晴的夏天,在卢卡斯影业上班的程序员Tom Duff,他是想为了加速一个实时动画程序,实现从一个数组复制数据到一个寄存器这样一个功能,真脸如下。

一般情况下,若要将数组元素复制进存储器映射输出寄存器,较为直接的做法如下所示

do {
  /* count > 0 assumed (假定count的初始值大于0) */    
  *to = *from++;            
  /* Note that the 'to' pointer is NOT incremented 
  (注意此处的指针变量to指向并未改变) */
while(--count > 0);

但是达夫洞察到,若在这一过程中将一条switch和一个循环相结合,则可展开循环,应用的是C语言里面case 标签的Fall through特性,实际就是没有break继续执行。实现如上代码所示。

其实第一版是这样写的:

void send(to, from, count)
register short *to, *from;
register int count;
{
    /* count > 0 assumed */
    do {        
        *to++ = *from++;
    } while (--count > 0);
}

这段代码等价于:

void send(register short* to, register short* from, register int count)
{
    /* count > 0 assumed */
    do {                          
        *to++ = *from++;
    } while (--count > 0);
}

但是在这种使用场景下,不易于移植和应用,然后他就更新了第二版,代码如下:

void send2(short* to, short* from, int count)
{
    int n = count / 8;
    do {
        *to++ = *from++;
        *to++ = *from++;
        *to++ = *from++;
        *to++ = *from++;
        *to++ = *from++;
        *to++ = *from++;
        *to++ = *from++;
        *to++ = *from++;
    } while (--n > 0);
}

这种写法减少了比较次数,在汇编层面单纯讲到下面代码的时候

do... while(--count > 0) 

总共有6条指令。大家可以用godbolt.org/ 测一下。如下(汇编测试参考网上资源,大家可以自行测试)

subl  $1,-4(%rbp)
cmp1  $0,-4(%rgp)
setg  %al,
testb %al,%al
je    ,L8
jmp   ,L7

如果原始count是256,就这一部分指令减少(256-256/8)*6=(256-32)*6=1344。对应6条指令:

movl   -36(%rbp),%eax
leal   7(%rax),%edx
testl  %eax,%eax
cmovs  %edx,%eax
sarl   $3,%eax
movl   %eax,-4(%rbp)

但是这个版本在通用性能还不够,count一定要是8的倍数,所以经过了这两个版本的发展,最终才有了上述那个最终版本的诞生。虽然性能上没有什么优化,但是最终版的达夫设备,count不局限于一定是8的倍数了!

实现机制、代码解析

实现机制

在达夫解决这个问题的时候,当时的C语言对switch语句的规范是比较松的,在switch控制语句内,条件标号(case)可以出现在任意子语句之前,充作其前缀。

此外若未加入break语句,则在switch语句在根据条件判定,跳转到对应的标号,并在开始执行后,控制流会一直执行到switch嵌套语句的末尾。

利用这种特性,这段代码可以从连续地址中将count个数据复制到存储器中,映射输出寄存器中。

另一方面,C语言本身也对跳转到循环内部提供了支持,因而此处的switch/case语句便可跳转到循环内部。

代码解析

首先说下这段代码,编译没问题,我们写个代码如下:

#include < iostream > 
using namespace std;
int  main()
{
    int  n  = 0 ;
    switch  (n)  { 
    case 0 :  do   {cout  <<   " 0 "   <<  endl;
    case 1 :         cout  <<   " 1 "   <<  endl;
    case 2 :         cout  <<   " 2 "   <<  endl;
    case 3 :         cout  <<   " 3 "   <<  endl; 
      }   while ( -- n  > 0 ); 
   } 

根据n的不同输入,实验结果如下

n的值 程序输出
0 0 1 2 3
1 1 2 3
2 2 3 0 1 2 3
3 3 0 1 2 3 0 1 2 3

这段代码的主体还是do-while循环,但这个循环的入口点并不一定是在do那里,而是由这个switch(n),把循环的入口定在了几个case标号那里。

即程序的执行流程是: 

程序执行到了switch的时候,就会根据n的值,直接跳转到 case n那里,再当它执行到while那里时,就会判断循环条件。若为真,则while循环开始,程序跳转到do那里开始执行循环;为假,则退出循环,即程序中止。(这个swicth语句就再也没有用了)

我们再看以下代码,这里 count 个字节从 from 指向的数组复制到 to 指向的内存地址,是个内存映射的输出寄存器。它把 swtich 语句和复制 8 个字节的循环交织在一起, 从而解决了剩余字节的处理问题 (当 count % 8 != 0)。

void send( int * to, int * from, int count)
{
    int n = (count + 7 ) / 8 ;
    switch (count % 8 ) {
    case 0 :    do { * to ++ = * from ++ ;
    case 7 :          * to ++ = * from ++ ;
    case 6 :          * to ++ = * from ++ ;
    case 5 :          * to ++ = * from ++ ;
    case 4 :          * to ++ = * from ++ ;
    case 3 :          * to ++ = * from ++ ;
    case 2 :          * to ++ = * from ++ ;
    case 1 :          * to ++ = * from ++ ;
           } while ( -- n >    0 );
    }  
}

switch内的表达式计算被8除的余数。执行开始于while循环内的哪个位置由这个余数决定,直到最终循环退出(没有break)。Duff's Device这样就简单漂亮地解决了边界条件的问题。

性能表现

我们一般使用用for循环或者while循环的时候,如果执行循环内容本身用不了多少时间,本质上时间主要是消耗在了每次循环的比较语句上边。

而事实上,比较语句是有很大优化空间的,我们假设你要循环10000次,结果你从第一次开始就不断的比较是否达到上界值,这是不是很徒劳呢?

我们写一个达夫设备的函数用来测试执行时间(参考网上资源,这个测试不难,不同测试会有不同效果,大家可以自行测试一下):

int duff_device(int a)
{
    resigter x = 0;
    int n = (a) / 10;
    switch(a%10){
        case 0:do{ x++;
        case 9:x++; 
        case 8:x++;   
        case 7:x++;  
        case 6:x++;   
        case 5:x++;   
        case 4:x++;   
        case 3:x++;   
        case 2:x++;   
        case 1:x++;   
        }while(--n>0)
    }
    return x;
}

测试主函数如下

#include <Windows.h>
#define count 999999999
long int overtime = count;
int main()
{
    printf("over %d",duff_device(overtime));
    return 0;
}

执行时间如下

现在我们看一下传统的循环的执行时间,其测试代码如下:

int classical(int a)
{
    register x=0;
    do{
        x ++;
    }while(--a>0);
    return x;
}

测试主函数如下

#include <Windows.h>
#define count 999999999
long int overtime = count;
int main()
{
    printf("over %d",classical(overtime));
    return 0;
}

执行时间如下

结果显示达夫设备确实缩短了不少时间,这里x的定义是要用register关键字,这样cpu就会把x尽可能存入cpu内部的寄存器,新的cpu应该会有很通用寄存器使用。

值得一提的是,针对串行复制的需求,标准C语言库提供了memcpy函数,而其效率不会比斯特劳斯鲁普版的达夫设备低,并可能包含了针对特定架构的优化,从而进一步大幅提升执行效率。

从不同角度看达夫设备

从语言的角度来看

我个人觉得这种写法不是很值得我们借鉴。毕竟这不是符合我们“正常”逻辑的代码,至少C/C++标准不会保证这样的代码一定不会出错。

另外, 这种代码冷知识,估计有很多人根本都没见过,如果自己写的代码别人看不懂,估计会被骂的。

从算法的角度来看

我觉得达夫设备是个很高效、很值得我们去学习的东西。把一次消耗相对比较高的操作“分摊“到了多次消耗相对比较低的操作上面,就像vector 中实现可变长度的数组的思想那样,节省了大量的机器资源,也大大提高了程序的效率。这是值得我们去学习的。

总结

达夫设备能实现的优化效果日趋在减弱,时代在变化,语言在发展,硬件设备在变化,编译器性能优化,除非特殊的需求下,一般还是没必要做像这种层次的性能考量的。不过,这种奇妙的 switch-case 写法经常研究一下还是很有乐趣的,你们觉得呢……


1.熊谱翔:变化的RT-Thread,不变的初心

2.在嵌入式应用中,有一种管理资源的好方法!

3.一次事件会触发两次中断?

4.放弃MBP,用 8GB 的树莓派4 工作一天,是这样的感受!

5.用STM32 MPU做项目,不要低估软硬件,不要放弃MCU的起源!

6.枪与半导体:上一场科技世界大战

免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。


嵌入式资讯精选 掌握最鲜资讯,尽领行业新风
评论 (0)
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 140浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 171浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 82浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 146浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 107浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 148浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 174浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 196浏览
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 145浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 108浏览
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 148浏览
×
广告
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦