二氧化钒辅助的可切换多功能超材料结构

MEMS 2023-04-29 00:00

随着太赫兹技术的迅速发展,基于太赫兹的超材料的应用拥有了更多可能性,在滤波器、调制器、偏振转换器、吸收器等许多方面的应用都受到了诸多关注。石墨烯、液晶(LC)、二氧化钒(VO₂)等可调谐材料的出现,为功能性超材料器件的开发提供了新的途径。VO₂作为一种典型相变材料,通过各种激励方式(如热、电等)可使其发生相变,在温度变化时,其电导率会发生近4个数量级的变化,同时也会呈现出不同的状态,这使得VO₂适用于设计多功能超材料器件。

据麦姆斯咨询报道,近期,中国计量大学和天津大学的联合科研团队在《中国光学(中英文)》期刊上发表了以“二氧化钒辅助的可切换多功能超材料结构”为主题的文章。该文章第一作者为陈欣怡,通讯作者为中国计量大学严德贤副教授,主要从事太赫兹微波技术及器件的研究工作。

本文提出了一种基于VO₂相变特性的开口谐振环结构多功能超材料偏振转换器件。该器件由VO₂填充的开口谐振环和中心放置十字的顶层、聚酰亚胺(PI)介质层和金属基底构成。VO₂在绝缘态时,可以实现交叉极化转换功能,在0.48~0.87 THz范围内,偏振转换率大于90%。当VO₂为金属态时,该器件能够实现双频吸收和高灵敏度传感功能。在1.64 THz和2.15 THz频率处的吸收率大于88%。通过改变样品材料的折射率,两个频率点处的传感灵敏度分别约为25.6 GHz/RIU和159 GHz/RIU,品质因子Q分别为71.34和23.12。所提出的超材料多功能器件具有结构简单、可切换功能和高效率极化转换等特性,在未来太赫兹通信、成像等领域都有潜在的应用价值。

结构设计与仿真

本文提出的超材料多功能器件的单元结构如图1所示。该单元结构从上至下依次是由VO₂填充的开口谐振环和金属十字结构构成的顶层结构、PI介质层及底部金属层。本文使用CST Microwave Studio软件对提出的结构及其特性进行仿真研究。太赫兹波沿着z方向垂直入射到超材料结构表面。仿真时,在x和y方向上添加单元周期边界,在z方向添加开放边界条件。

图1 所提出的多功能超材料器件的结构示意图。(a)三维视图;(b)俯视图;(c)侧视图。

参数优化之后,设定其结构单元的周期Px=Py=100 μm,圆环开口角度α=30°,开口圆环外半径R₁=45 μm,开口圆环内半径R₂=42 μm,中心十字的较长边为b=32 μm,中心十字的较短边为a=10 μm,PI介质层的相对介电常数为ε=3.5,损耗角正切值为tan δ=0.0027,厚度为Z₃=45 μm。底层金属材料为金,其厚度为Z₂=0.1 μm,电导率为σ(gold)=4.09×10⁷ S/m。根据之前的研究结果,可以使用Drude模型来描述VO₂在太赫兹波段的特性。通过外部电场、光场和温度场的作用,能够在较短的时间内改变VO₂的相变特性,进而影响VO₂的电导率。在本文中,当VO₂的电导率从小于100 S/m变化为高于200000 S/m时,VO₂可以从绝缘态变化为金属态,能够实现不同的功能。

结果与讨论

VO₂为绝缘态时超表面为偏振转换器

当VO₂处于绝缘态时,该结构可以看作是一个偏振转换器件,能够实现线偏振-线偏振和线偏振-圆偏振转换。工作带宽和转换效率是超材料偏振转换器的重要性能指标。

基于优化后的几何参数,在VO₂处于绝缘态(电导率为20 S/m)时,对0.2~1.2 THz范围内的超材料结构进行仿真,得到了两种模式下的共极化反射和交叉极化反射系数。由于该结构在x和y方向具有对称性,在正常入射条件下,TE模和TM模是简并的,对偏振极化角不敏感,故本文提出的结构在TE模TM模下共极化反射系数与交叉极化反射系数是相同的,如图2(a)所示。在0.48~0.87 THz频率范围内,共极化反射系数相对较低,而交叉极化反射系数较高,可以实现交叉偏振转换。在频率为0.41 THz和1.0 THz处,交叉极化反射系数和共极化反射系数相等,可以实现线偏振-圆偏振转换。图2(b)给出了计算得到的偏振转换率。从图2(b)可以看出,在0.48~0.87 THz频率范围内,线偏振-交叉线偏振的偏振转换效率高于90%,并且在0.52 THz、0.66 THz和0.85 THz频率处的转换效率接近100%,能够实现完美线偏振-线偏振转换。由图2可知,在0.4 THz频率附近PCR曲线有明显的峰谷。这是由于在该频点附近存在线偏振-圆偏振转换,在该频点处线-线偏振转换效率受到交叉极化反射和共极化反射转换产生的电磁波极化偏移的影响导致偏振转换效率下降。同时,通过对0.41 THz和1.0 THz处的转换特性进行分析,可以发现在这两个频率处能够实现线偏振-圆偏振转换,可以将入射的线偏振太赫兹波转换为圆偏振太赫兹波。

图2 仿真得到的(a)反射系数和(b)不同偏振入射的PCR

另外,由于超材料结构的工作性能在一定程度上受几何结构参数的影响,为得到最理想的参数,本文研究了结构几何参数对工作性能的影响。在研究过程中,除一个待研究参数改变外,其他参数保持初始设置不变。分别研究了参数b、Z₃和R₁对偏振转换率的影响,如图3所示。如图3(a)所示,偏振转器的工作带宽随着中心十字较长边长度b的增加而减小,带宽变窄,且较高频率处的完美偏振转换频率呈红移的趋势。由图3(b)可知,介质层厚度Z₃对该结构偏振转换率的影响较小。由图3(c)可知,当开口谐振环外半径R₁从43 μm增加到48 μm时,偏振转换带宽的低频部分受到的影响较大,偏振转换率降低,但高频部分的偏振转换带宽受到影响较小。基于上述分析,在现有的器件加工条件下,当结构参数在一定范围内变化时,对偏振转换性能的影响是可接受的。

图3 当VO₂处于绝缘态时,结构参数对偏振转换率的影响。(a)中心十字长边长b;(b)介质厚度Z₃以及(c)开口谐振环外半径R₁

上述分析结果表明,本文提出的超材料多功能偏振转换器件能够在较宽的频率范围内实现高效率的偏振转换。其可应用在医学成像、偏振转换器件的研制等方面。由于频谱资源充足,太赫兹通信具有比现有微波通信更高的数据容量,偏振和轨道角动量(OAM)复用可以进一步增加信息容量。通过偏振转换来操纵超表面的输出电磁场,可实现诸如平面透镜、光束偏转器、全息成像和涡旋波发生器等各种功能器件。

当VO₂处于金属态时超材料结构性能分析

当VO₂处于金属态时,由VO₂填充缺口的开口谐振环可以近似看作是一个圆环。此时,所设计的超材料结构可以实现双频吸收和传感功能。

金属态时作为双频吸收器

当VO₂处于金属态时,所提出的太赫兹超材料能够实现吸收功能,并研究了其光学特性。当VO₂处于金属态时,计算了超材料结构作为吸收器时的相关工作性能,以及相对阻抗的实部和虚部,结果如图4(a)所示,其中黑色实线表示吸收光谱A(ω),蓝色和红色虚线分别表示吸收器共极化反射和交叉极化反射。从图4(a)中可以看出,在1.64 THz和2.15 THz频率处可以观察到2个不同的吸收峰,吸收率大于88%。且1.64 THz处的吸收峰的带宽小于2.15 THz频率处的吸收峰带宽。

下面将运用阻抗匹配理论阐明吸收器的工作机理。吸收器的相对阻抗的实部和虚部均可由S参数反演法导出。图4(b)给出了所提出吸收器的吸收谱和相对阻抗实部和虚部。从图中可以看出,在1.64 THz和2.15 THz频率处的两个吸收峰附近,相对阻抗的实部逐渐接近于1,虚部逐渐接近于0,在这两个频率处实现了吸收器和空气之间的阻抗匹配。需要说明的是,由于所设计的超材料器件的单元结构具有对称性,当偏振角为90°时,能够得到大致相同的吸收特性,相关结果在文中没有给出。

图4 VO₂处于金属态时,所设计的超材料结构的吸收特性。(a)反射系数和吸收特性;(b)相对阻抗的实部和虚部

当VO₂处于金属态时,研究了部分几何参数(b、R₁、Z₃)对所设计超材料结构的太赫兹吸收特性的影响,如图5所示。由图5(a)可以看出,超材料结构顶层中心十字长边长b的变化会引起吸收谐振峰的轻微红移,且随着b的增加,高频处的吸收也有轻微降低。从图5(b)能够看出,随着介质层Z₃从43 μm增加到47 μm,低频处的吸收峰具有一定程度的红移,且吸收率从接近100%下降到70%左右。相较于低频处的吸收峰,高频处的吸收峰表现出较为显著的红移现象,吸收率变化不大。从图5(c)可以看出,当顶层圆环结构外半径R₁从43 μm增加到47 μm时,低频处的吸收峰呈现轻微的蓝移现象,且吸收率略微升高,高频处的吸收峰出现轻微红移趋势,但吸收率增加明显。

图5 吸收器单元结构参数对太赫兹吸收率的影响。(a)中心十字长边长b;(b)介质层厚度Z₃;(c)开口谐振环半径R₁

为进一步研究本器件的吸收机理,研究了当入射太赫兹波为TE偏振波时,该吸收结构在两个吸收峰(1.64 THz和2.15 THz)处的顶层微结构的电场分布,如图6所示。图6(a)给出了频率为1.64 THz处微结构上的电场分布,该频率处的电场主要分布在中心十字结构的末端处,与底部金属薄膜层存在很强的耦合,引起了此频率处太赫兹波的吸收。而如图6(b)所示,在频率为2.15 THz处,电场主要均匀分布在顶层的圆环结构上,导致此处太赫兹波的吸收。

图6 顶层微结构在谐振频率。(a)1.64 THz和(b)2.15 THz处的电场分布

最后,本文对不同偏振(TE偏振和TM偏振)入射太赫兹在不同入射角度时的吸收特性进行了研究。从图7(a)可以看出,对于TE偏振入射太赫兹波,当入射角增加时,低频处的吸收峰分裂为两个;高频处的吸收峰表现出红移趋势,且在入射角大于20°时此处吸收峰的谐振逐渐转移到另一个吸收峰上。从图7(b)可以看出,入射角度对TM偏振入射太赫兹波的影响较大,当入射角度大于20°时,吸收特性受影响较大,且分裂为多个频率范围的吸收区域。

图7 不同入射角的超材料结构吸收特性。(a)TE偏振入射;(b)TM偏振入射

金属态时作为传感器

根据太赫兹超材料的传输特性,本文提出的超材料结构能够对不同折射率的外部介质表现出良好的传感特性,可通过改变背景介质的折射率得到吸收的变化特性。由此,对该结构在1.64 THz和2.15 THz频率处的传感特性进行研究。将不同折射率的待测介质层设置在该超材料结构的顶层用来模拟传感样品环境。如图8(a)所示,随着折射率从1.0增加到1.25,两个吸收峰呈现红移的变化趋势,这表明该结构对外界环境的介电常数比较敏感,所以这种结构在传感方面具有较大的应用潜力。灵敏度是衡量传感器静态特性的一个重要指标,可以通过灵敏度来衡量折射率传感器的性能。对于低频谐振频率1.64 THz处的吸收峰,通过线性拟合,可求得该谐振频率处的传感灵敏度约为25.6 GHz/RIU,如图8(b)所示。对于较高谐振频率2.15 THz处的吸收峰,通过线性拟合可得该频率处的传感灵敏度约为159 GHz/RIU,如图8(c)所示。相比较而言,较高频率吸收峰处的传感灵敏度较高。传感器的质量因子Q可以表示为Q=f₀/∆f,其中,f₀是谐振吸收峰的谐振频率,∆f是谐振频率处的半高宽度。通过计算,在1.64 THz和2.15 THz处吸收峰的Q因子分别为71.34和23.12。综上分析,与其他传统材料的传感器相比,该结构灵敏度高,传感性能良好,且响应速度优于传统传感器。该结构在金属态时,实现的吸收和传感功能均可应用在能量采集和光学传感中,可拓展到太赫兹成像、检测等领域。基于超材料吸收器的生物传感可以通过增强局域电磁谐振,实现亚波长分辨,大大提高传感器的分辨率与灵敏度。目前基于超材料的太赫兹传感器已被广泛应用于蛋白质浓度检测、病毒检测、癌细胞及其标记物检测。

图8 吸收器用作传感器时的性能分析。

(a)吸收特性随待测样品折射率的变化情况;(b)1.64 THz频率处的传感特性;(c)2.15 THz频率处的传感特性

结论

本文提出一种基于VO₂相变特性的开口谐振环结构多功能超材料器件,该器件在VO₂处于不同条件下可实现功能切换。当VO₂处于绝缘态时,此结构作为偏振转换器可实现高效率的线偏振-线偏振转换,在0.48~0.87 THz频率范围内,偏振转换率大于90%。当VO₂处于金属态时,可以实现双频吸收和高灵敏度传感功能。在1.64 THz和2.15 THz频率处具有2个不同的吸收峰,吸收率大于88%。接着研究了在这两个频率点处的传感特性,通过改变样品材料的折射率得出,两个频率点处的传感灵敏度分别约为25.6 GHz/RIU和159 GHz/RIU,而两个频率点处的Q因子分别为71.34和23.12,展现出优良的传感性能。同时还研究了结构参数对偏振转换性能和吸收性能的影响,从而为样品的实际加工提供参考。本文提出的超材料器件具有结构简单、调谐范围广、多功能应用等特点,大大提升了器件实用可行性,并为太赫兹波段多功能器件的研究提供了思路。

这项研究获得国家级大学生创新创业训练计划资助项目(202110356012)和国家自然科学基金(62001444)的资助和支持。

论文信息:

http://www.chineseoptics.net.cn/cn/article/doi/10.37188/CO.2022-0195

延伸阅读:
《新兴图像传感器技术及市场-2023版》
《光谱成像市场和趋势-2022版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 475浏览
  • 电动汽车(EV)正在改变交通运输,为传统内燃机提供更清洁、更高效的替代方案。这种转变的核心是电力电子和能源管理方面的创新,而光耦合器在其中发挥着关键作用。这些不起眼的组件可实现可靠的通信、增强安全性并优化电动汽车系统的性能,使其成为正在进行的革命中不可或缺的一部分。光耦合器,也称为光隔离器,是一种使用光传输电信号的设备。通过隔离高压和低压电路,光耦合器可确保安全性、减少干扰并保持信号完整性。这些特性对于电动汽车至关重要,因为精确控制和安全性至关重要。 光耦合器在电动汽车中的作用1.电池
    腾恩科技-彭工 2025-01-10 16:14 75浏览
  • 说到福特,就要从亨利·福特(Henry Ford)这个人物说起。在发明大王爱迪生的电气工厂担任工程师的福特下班后,总是在自家仓库里努力研究和开发汽车。1896年,福特终于成功制造出一辆三轮车,开启了福特汽车的传奇。最初几年,福特都是独自制造汽车并同时进行销售。 (今天很多人都知道的精益管理中的5S方法,或多或少地受到了福特 CANDO方法的影响。)1903年,福特从牧师、律师、银行家、会计师等十一位股东那里筹集了十万美元,并在自家庭院成立了美国第五百零三家汽车公司——福特汽车公司(Fo
    优思学院 2025-01-10 11:21 51浏览
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 162浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 436浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 490浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 100浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 457浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 447浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 167浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 501浏览
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 97浏览
  • LVGL(Light and Versatile Graphics Library)是一个免费的开源图形库,旨在为各种微控制器(MCU)和微处理器(MPU)创建美观的用户界面(UI)。LVGL可以在占用很少资源的前提下,实现丝滑的动画效果和平滑滚动的高级图形,具有轻量化、跨平台可用性、易于移植、操作友好以及免费使用等诸多优势。近期,飞凌嵌入式为OK3506J-S开发板移植了最新9.2版本的LVGL,支持多种屏幕构件以及鼠标、键盘、触摸等多种输入方式, 能够带来更加友好的操作界面;同时,启动速度也
    飞凌嵌入式 2025-01-10 10:57 48浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 322浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 468浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦