台积电深度披露2nm,,介绍3nm的演进

传感器技术 2023-04-28 07:03

在今天举行的 2023 年北美技术研讨会上,台积电披露了有关其即将在 2025 年至 2026 年及以后推出的 N2 2nm 级生产节点计划的更多详细信息。台积电的 N2 制造技术系列将随着更多变化而扩展,包括具有背面供电的 N2P 和用于高性能计算的 N2X。在这些即将到来的 N2 代工艺节点之间,台积电正在制定路线图,以继续其提高晶体管性能效率、优化功耗和提高晶体管密度的不懈步伐。


N2 密度更高


台积电去年推出的初始N2 制造工艺将成为代工厂龙头第一个使用环栅 (GAAFET) 晶体管的节点,台积电将其称为 Nanosheet 晶体管。GAAFET 相对于当前 FinFET 晶体管的优势包括更低的漏电流(因为栅极存在于沟道的所有四个侧面),以及调整沟道宽度以实现更高性能或更低功耗的能力。



台积电在去年推出这项技术时表示,在相同的功率和复杂度下,可以将晶体管性能提升 10% 到 15%,或者在相同的时钟和晶体管数量下,将功耗降低 25% 到 30%。该公司还表示,N2 将提供比N3E高 15% 以上的“混合”芯片密度,这比去年宣布的 10% 密度增加有所增加。


今天,该公司表示 N2 技术开发步入正轨,该节点将在 2025 年(可能是 2025 年很晚)进入大批量生产。该公司还表示,在进入 HVM 前两年,其 Nanosheet GAA 晶体管性能已达到其目标规格的 80% 以上,并且 256Mb SRAM 测试 IC 的平均良率超过 50%。



“台积电纳米片技术展示了出色的电源效率和更低的 Vmin,最适合节能计算范式,”台积电的一份声明中写道。



N2P在2026年获得背面供电


台积电的 N2 系列将在 2026 年的某个时候发展,届时该公司计划推出其 N2P 制造技术。N2P 将为 N2 的 Nanosheet GAA 晶体管添加背面电源轨。


背面供电旨在通过将电源轨移至背面来解耦 I/O 和电源布线,从而解决后端线路 (BEOL) 中过孔电阻升高等挑战。反过来,这将提高晶体管性能并降低其功耗。此外,背面供电消除了数据和电源连接之间的一些潜在干扰。


背面供电是一项创新,其重要性怎么强调都不为过。多年来,芯片制造商一直在与芯片供电电路中的阻力作斗争,而背面供电网络 (PDN) 是解决这些问题的另一种方法。此外,去耦 PDN 和数据连接也有助于减少面积,因此与 N2 相比,N2P 有望进一步提高晶体管密度。



目前,台积电并未透露任何有关 N2P 相对于 N2 的性能、功耗和面积 (PPA) 优势的具体数字。但根据我们从业内人士那里听到的消息,单是背面电源轨就可以带来个位数的功率改进和两位数的晶体管密度改进。


台积电表示,N2P 有望在 2026 年投产,因此我们可以推测,首款基于 N2P 的芯片将于 2027 年上市。这个时间表将使台积电在背面功率方面落后竞争对手英特尔大约两年,假设他们能够在 2024 年按时交付自己的 20A 工艺。


N2X:更高的性能


除了可能成为台积电 2nm 代工艺的主力军的 N2P 之外,台积电还在准备 N2X。这将是一种为高性能计算 (HPC) 应用量身定制的制造工艺,例如需要更高电压和时钟的高端 CPU。代工厂并未概述该节点与 N2、N2P 和 N3X 相比的具体优势,但与所有性能增强节点一样,实际优势预计将在很大程度上取决于实施了多少设计技术协同优化 (DTCO) .


在介绍2nm的同时,台积电在技术研讨会上海深入介绍了公司3nm的演进路线。


详细介绍3nm的演进


3nm是台积电最后一代基于 FinFET 的工艺节点,N3 系列预计将在未来许多年内以某种形状或形式存在,作为不需要更先进的基于 GAAFET 工艺的客户可用的最密集节点。


台积电在 N3 前端的重大路线图更新是 N3P 及其高性能变体 N3X。正如台积电今天透露的那样,N3P 将是 N3E 的光学缩小版,与 N3E 相比,提供增强的性能、更低的功耗和更高的晶体管密度,同时保持与 N3E 设计规则的兼容性。同时,N3X 将极致性能与 3 纳米级密度相结合,为高性能 CPU 和其他处理器提供更高的时钟速度。


作为快速复习,台积电的 N3(3 纳米级)工艺技术系列由多种变体组成,包括基准 N3(又名 N3B)、降低成本的宽松 N3E、具有增强性能和芯片密度的 N3P 以及具有更高电压容限的 N3X . 去年该公司还谈到了具有最大化晶体管密度的 N3S,但今年该公司对这个节点守口如瓶,幻灯片中的任何地方都没有提到它。



台积电的普通 N3 节点具有多达 25 个 EUV 层,台积电在其中一些层上使用 EUV 双图案,以实现比 N5 更高的逻辑和 SRAM 晶体管密度。EUV 步骤通常很昂贵,而 EUV 双图案化进一步推高了这些成本,这就是为什么这种制造工艺预计只会被少数不关心所需高额支出的客户使用。



大多数对 3nm 级工艺感兴趣的台积电客户预计将使用宽松的 N3E 节点,根据台积电的说法,该节点正在按计划实现其性能目标。N3E 使用多达 19 个 EUV 层,完全不依赖 EUV 双图案化,降低了其复杂性和成本。权衡是 N3E 提供比 N3 更低的逻辑密度,并且它具有与 TSMC 的 N5 节点相同的 SRAM 单元尺寸,这使得它对那些追求密度/面积增益的客户的吸引力有所降低。总体而言,N3E 有望提供更宽的工艺窗口和更高的良率,这是芯片制造中的两个关键指标。


台积电业务发展副总裁 Kevin Zhang 表示:“N3E 在良率、工艺复杂性方面将优于 N3,这直接转化为 [更宽的] 工艺窗口。”


在 N3E 之后,台积电将继续使用 N3P 优化 N3 系列的晶体管密度,N3P 将通过提供改进的晶体管特性建立在 N3E 的基础上。改进的工艺节点将使芯片设计人员能够在相同的泄漏下将性能提高 5%,或者在相同的时钟下将功耗降低 5% ~ 10%。新节点还将为“混合”芯片设计增加 4% 的晶体管密度,台积电将其定义为由 50% 逻辑、30% SRAM 和 20% 模拟电路组成的芯片。


作为他们对 N3P 讨论的一部分,台积电强调密度的提高是通过调整其扫描仪的光学性能来实现的。因此,台积电很可能会在这里缩小所有类型的芯片结构,这将使 N3P 成为 SRAM 密集型设计的一个有吸引力的节点。


“N3P 是一种性能提升,它的性能提高了 5%,至少比 N3E 高出 5%,”张解释说。它还具有 2% 的光学收缩,使晶体管密度达到 1.04 倍。”



由于N3P是N3E的光缩,它会保留N3E的设计规则,使芯片设计者能够在新节点上快速复用N3E IP。因此,N3P 预计也将成为 TSMC 最受欢迎的 N3 节点之一,因此预计 Cadence 和 Synopsys 等 IP 设计公司将为该工艺技术提供各种 IP,从而在工艺中获得与现有 N3E 的前向兼容性优势。台积电表示,N3P 将于 2024 年下半年量产。


最后,对于 CPU 和 GPU 等高性能计算应用程序的开发人员,台积电在过去几代中一直提供其 X 系列高压、以性能为中心的节点。正如在去年的活动中所披露的那样,N3 系列将拥有自己的 X 变体,并带有恰当命名的 N3X 节点。


与 N3E 相比,N3X 预计提供至少比 N3P 高 5% 的时钟速度。这是通过使节点更能承受更高电压来实现的,允许芯片设计人员提高时钟速度以换取更高的整体泄漏。



台积电声称 N3X 将支持(至少)1.2v 的电压,这对于 3nm 级制造工艺来说是一个相当极端的电压。反过来,泄漏成本也很高,台积电预计在更平衡的 N3P 节点上功率泄漏将增加 250%。这强调了为什么 N3X 实际上只适用于 HPC 级处理器,并且芯片设计人员需要格外小心,以控制他们最强大(和耗电)的芯片。


至于晶体管密度,N3X 将提供与 N3P 相同的密度。台积电还没有评论它是否也会保持与 N3P 和 N3E 的设计规则兼容,所以看看最终会发生什么将会很有趣。


台积电当前路线图中的最后一个 N3 系列节点,该公司表示 N3X 将于 2025 年投入生产。


更多技术发布


在会上,台积电还披露了TSMC 3DFabric先进封装和硅堆叠——TSMC 3DFabric 系统集成技术的主要新发展,当中包括:


先进封装——为了支持 HPC 应用在单个封装中容纳更多处理器和内存的需求,台积电正在开发基板上晶圆上芯片 (CoWoS) 解决方案,该解决方案具有高达 6 倍光罩尺寸(~5,000mm2)的 RDL 中介层,能够可容纳 12 个 HBM 内存堆栈。


3D 芯片堆叠——台积电宣布推出 SoIC-P,这是其集成芯片系统 (SoIC) 解决方案的微凸块版本,为 3D 芯片堆叠提供了一种经济高效的方式。SoIC-P 补充了 TSMC 现有的用于高性能计算 (HPC) 应用的无扰动解决方案,这些解决方案现在称为 SoIC-X。


设计支持——台积电推出了 3Dblox 1.5,这是其开放标准设计语言的最新版本,旨在降低 3D IC 设计的门槛。3Dblox 1.5 添加了自动凸点合成,帮助设计人员处理具有数千个凸点的大型芯片的复杂性,并有可能将设计时间缩短数月。


台积电还表示,今年将发布新软件,以帮助开发先进汽车计算机芯片的客户更快地利用其最新技术。


台积电是全球最大的半导体合约制造商。恩智浦半导体和意法半导体等许多汽车行业最大的芯片供应商都选择台积电制造芯片。但与消费电子产品中的芯片相比,汽车芯片必须满足更高的坚固性和寿命标准。台积电拥有用于汽车行业的特殊制造工艺,通常比消费类芯片的类似工艺晚几年。


过去,汽车芯片公司需要额外的时间来为那些专门的生产线创建芯片设计。结果是汽车芯片可能比最新智能手机中的芯片落后数年。在技术大会上,台积电推出了新软件,使汽车芯片设计人员能够提前两年左右开始设计工作。这将使这些公司能够使用台积电 N3 芯片制造技术的汽车版本——这是消费设备的当前技术水平——一旦台积电在 2025 年推出汽车级版本。


“从历史上看,汽车一直远远落后于消费者,”台积电业务发展副总裁 Kevin Zhang 在新闻发布会上表示。“那是过去。这使我们的汽车客户能够更早地开始他们的设计——事实上,比之前早了两年。”


张说,在大流行和随之而来的汽车半导体短缺之前,汽车制造商通常将重要的芯片技术决策留给供应商。但现在,这些供应商和汽车制造商经常与台积电直接讨论。“他们充分意识到他们需要直接接触硅技术选择,”张说。“在过去的几年里,我亲自会见了许多主要的汽车业首席执行官。...我们在前期与他们密切合作。”


来源:世界半导体技术论坛


本公众号高薪签约长期专栏作者,欢迎具备优秀写作能力的科技从业或爱好者,联系传感器小编YG18511751369(微信号)

期待下一篇10W+出自您的笔下!

 

免责声明:本文版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。 

  

 

为您发布产品,请点击“阅读原文”

 

传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论 (0)
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 19浏览
  •        在“软件定义汽车”的时代浪潮下,车载软件的重要性日益凸显,软件在整车成本中的比重逐步攀升,已成为汽车智能化、网联化、电动化发展的核心驱动力。车载软件的质量直接关系到车辆的安全性、可靠性以及用户体验,因此,构建一套科学、严谨、高效的车载软件研发流程,确保软件质量的稳定性和可控性,已成为行业共识和迫切需求。       作为汽车电子系统领域的杰出企业,经纬恒润深刻理解车载软件研发的复杂性和挑战性,致力于为O
    经纬恒润 2025-03-31 16:48 17浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 36浏览
  • Shinco音响拆解 一年一次的面包板社区的拆解活动拉开帷幕了。板友们开始大显身手了,拆解各种闲置的宝贝。把各自的设计原理和拆解的感悟一一向电子爱好者展示。产品使用了什么方案,用了什么芯片,能否有更优的方案等等。不仅让拆解的人员了解和深入探索在其中。还可以让网友们学习电子方面的相关知识。今天我也向各位拆解一个产品--- Shinco音响(如下图)。 当产品连接上电脑的耳机孔和USB孔时,它会发出“开机,音频输入模式”的语音播报,。告诉用户它已经进入音响外放模式。3.5mm耳机扣接收电脑音频信号。
    zhusx123 2025-03-30 15:42 99浏览
  •        随着智能驾驶向L3级及以上迈进,系统对实时性的要求已逼近极限。例如,自动紧急制动(AEB)需在50毫秒内完成感知、决策到执行的全链路响应,多传感器数据同步误差需小于10微秒。然而,传统基于Linux-RT的方案在混合任务处理中存在天然缺陷——其最大中断延迟高达200微秒,且多任务并发时易引发优先级反转问题。据《2024年智能汽车电子架构白皮书》统计,超60%的车企因实时性不足被迫推迟舱驾一体化项目落地。为旌电子给出的破局之道,是采用R5F(实
    中科领创 2025-03-29 11:55 273浏览
  • 一、温度计不准的原因温度计不准可能由多种原因导致,如温度计本身的质量问题、使用环境的变化、长时间未进行校准等。为了确保温度计的准确性,需要定期进行校准。二、校准前准备工作在进行温度计校准之前,需要做好以下准备工作:1. 选择合适的校准方法和设备,根据温度计的型号和使用需求来确定。2. 确保校准环境稳定,避免外部因素对校准结果产生影响。3. 熟悉温度计的使用说明书和校准流程,以便正确操作。三、温度计校准方法温度计校准方法一般分为以下几步:1. 将温度计放置在
    锦正茂科技 2025-03-31 10:27 12浏览
  • 北京贞光科技有限公司作为紫光同芯产品的官方代理商,为客户提供车规安全芯片的硬件、软件SDK销售及专业技术服务,并且可以安排技术人员现场支持客户的选型和定制需求。在全球汽车电子市场竞争日益激烈的背景下,中国芯片厂商正通过与国际领先企业的深度合作,加速融入全球技术生态体系。近日,紫光同芯与德国HighTec达成的战略合作标志着国产高端车规芯片在国际化道路上迈出了关键一步,为中国汽车电子产业的发展注入了新的活力。全栈技术融合:打造国际化开发平台紫光同芯与HighTec共同宣布,HighTec汽车级编译
    贞光科技 2025-03-31 14:44 25浏览
  • 升职这件事,说到底不是单纯靠“干得多”或者“喊得响”。你可能也看过不少人,能力一般,甚至没你努力,却升得飞快;而你,日复一日地拼命干活,升职这两个字却始终离你有点远。这种“不公平”的感觉,其实在很多职场人心里都曾经出现过。但你有没有想过,问题可能就藏在一些你“没当回事”的小细节里?今天,我们就来聊聊你升职总是比别人慢,可能是因为这三个被你忽略的小细节。第一:你做得多,但说得少你可能是那种“默默付出型”的员工。项目来了接着干,困难来了顶上去,别人不愿意做的事情你都做了。但问题是,这些事情你做了,却
    优思学院 2025-03-31 14:58 25浏览
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 19浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 23浏览
  • 在不久前发布的《技术实战 | OK3588-C开发板上部署DeepSeek-R1大模型的完整指南》一文中,小编为大家介绍了DeepSeek-R1在飞凌嵌入式OK3588-C开发板上的移植部署、效果展示以及性能评测,本篇文章不仅将继续为大家带来关于DeepSeek-R1的干货知识,还会深入探讨多种平台的移植方式,并介绍更为丰富的交互方式,帮助大家更好地应用大语言模型。1、移植过程1.1 使用RKLLM-Toolkit部署至NPURKLLM-Toolkit是瑞芯微为大语言模型(LLM)专门开发的转换
    飞凌嵌入式 2025-03-31 11:22 24浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 37浏览
  • 在智能语音交互设备开发中,系统响应速度直接影响用户体验。WT588F系列语音芯片凭借其灵活的架构设计,在响应效率方面表现出色。本文将深入解析该芯片从接收指令到音频输出的全过程,并揭示不同工作模式下的时间性能差异。一、核心处理流程与时序分解1.1 典型指令执行路径指令接收 → 协议解析 → 存储寻址 → 数据读取 → 数模转换 → 音频输出1.2 关键阶段时间分布(典型值)处理阶段PWM模式耗时DAC模式耗时外挂Flash模式耗时指令解析2-3ms2-3ms3-5ms存储寻址1ms1ms5-10m
    广州唯创电子 2025-03-31 09:26 167浏览
  • 在智能家居领域,无线门铃正朝着高集成度、低功耗、强抗干扰的方向发展。 WTN6040F 和 WT588F02B 两款语音芯片,凭借其 内置EV1527编解码协议 和 免MCU设计 的独特优势,为无线门铃开发提供了革命性解决方案。本文将深入解析这两款芯片的技术特性、应用场景及落地价值。一、无线门铃市场痛点与芯片方案优势1.1 行业核心痛点系统复杂:传统方案需MCU+射频模块+语音芯片组合,BOM成本高功耗瓶颈:待机电流
    广州唯创电子 2025-03-31 09:06 141浏览
  • 在环保与经济挑战交织的当下,企业如何在提升绩效的同时,也为地球尽一份力?普渡大学理工学院教授 查德·劳克斯(Chad Laux),和来自 Maryville 大学、俄亥俄州立大学及 Trine 大学的三位学者,联合撰写了《精益可持续性:迈向循环经济之路(Lean Sustainability: Creating a Sustainable Future through Lean Thinking)》一书,为这一问题提供了深刻的答案。这本书也荣获了 国际精益六西格玛研究所(IL
    优思学院 2025-03-31 11:15 14浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦