【经典】开关电源调试时这10大问题需好好重视!

贸泽电子设计圈 2019-04-15 07:06

开关电源调试时最常见的10个问题,做为工程师的你还不知道吗?PS:内附解决方法!


1、变压器饱和

变压器饱和现象


在高压或低压输入下开机(包含轻载,重载,容性负载),输出短路,动态负载,高温等情况下,通过变压器(和开关管)的电流呈非线性增长,当出现此现象时,电流的峰值无法预知及控制,可能导致电流过应力和因此而产生的开关管过压而损坏。


变压器饱和时的电流波形


容易产生饱和的情况:


1)变压器感量太大;

2)圈数太少;

3)变压器的饱和电流点比IC的最大限流点小;

4)没有软启动。


解决办法:


1)降低IC的限流点;

2)加强软启动,使通过变压器的电流包络更缓慢上升。



2、Vds过高

Vds的应力要求:


最恶劣条件(最高输入电压,负载最大,环境温度最高,电源启动或短路测试)下,Vds的最大值不应超过额定规格的90%


Vds降低的办法:


1)减小平台电压:减小变压器原副边圈数比;

2)减小尖峰电压:


a.减小漏感:


变压器漏感在开关管开通是存储能量是产生这个尖峰电压的主要原因,减小漏感可以减小尖峰电压。


b.调整吸收电路:


①使用TVS管;

②使用较慢速的二极管,其本身可以吸收一定的能量(尖峰);

③插入阻尼电阻可以使得波形更加平滑,利于减小EMI。


3、IC 温度过高

原因及解决办法:


1)内部的MOSFET损耗太大:


开关损耗太大,变压器的寄生电容太大,造成MOSFET的开通、关断电流与Vds的交叉面积大。解决办法:增加变压器绕组的距离,以减小层间电容,如同绕组分多层绕制时,层间加入一层绝缘胶带(层间绝缘) 。


2)散热不良:


IC的很大一部分热量依靠引脚导到PCB及其上的铜箔,应尽量增加铜箔的面积并上更多的焊锡


3)IC周围空气温度太高:


IC应处于空气流动畅顺的地方,应远离零件温度太高的零件。


4、空载、轻载不能启动

现象:


空载、轻载不能启动,Vcc反复从启动电压和关断电压来回跳动。


原因:


空载、轻载时,Vcc绕组的感应电压太低,而进入反复重启动状态。


解决办法:


增加Vcc绕组圈数,减小Vcc限流电阻,适当加上假负载。如果增加Vcc绕组圈数,减小Vcc限流电阻后,重载时Vcc变得太高,请参照稳定Vcc的办法。



5、启动后不能加重载

原因及解决办法:


1)Vcc在重载时过高


重载时,Vcc绕组感应电压较高,使Vcc过高并达到IC的OVP点时,将触发IC的过压保护,引起无输出。如果电压进一步升高,超过IC的承受能力,IC将会损坏。


2)内部限流被触发


a.限流点太低


重载、容性负载时,如果限流点太低,流过MOSFET的电流被限制而不足,使得输出不足。解决办法是增大限流脚电阻,提高限流点。


b.电流上升斜率太大


上升斜率太大,电流的峰值会更大,容易触发内部限流保护。解决办法是在不使变压器饱和的前提下提高感量。


6、待机输入功率大

现象:


Vcc在空载、轻载时不足。这种情况会造成空载、轻载时输入功率过高,输出纹波过大。


原因:


输入功率过高的原因是,Vcc不足时,IC进入反复启动状态,频繁的需要高压给Vcc电容充电,造成起动电路损耗。如果启动脚与高压间串有电阻,此时电阻上功耗将较大,所以启动电阻的功率等级要足够。


电源IC未进入Burst Mode或已经进入Burst Mode,但Burst 频率太高,开关次数太多,开关损耗过大。


解决办法:


调节反馈参数,使得反馈速度降低。


7、短路功率过大

现象:


输出短路时,输入功率太大,Vds过高。


原因:


输出短路时,重复脉冲多,同时开关管电流峰值很大,造成输入功率太大过大的开关管电流在漏感上存储过大的能量,开关管关断时引起Vds高。


输出短路时有两种可能引起开关管停止工作:


1)触发OCP这种方式可以使开关动作立即停止


a.触发反馈脚的OCP;

b.开关动作停止;

c.Vcc下降到IC关闭电压;

d.Vcc重新上升到IC启动电压,而重新启动。


2)触发内部限流


这种方式发生时,限制可占空比,依靠Vcc下降到UVLO下限而停止开关动作,而Vcc下降的时间较长,即开关动作维持较长时间,输入功率将较大。

a.触发内部限流,占空比受限;

b.Vcc下降到IC关闭电压;

c.开关动作停止;

d.Vcc重新上升到IC启动电压,而重新启动。


解决办法:


1)减少电流脉冲数,使输出短路时触发反馈脚的OCP,可以使开关动作迅速停止工作,电流脉冲数将变少。这意味着短路发生时,反馈脚的电压应该更快的上升。所以反馈脚的电容不可太大;


2)减小峰值电流。


8、空载,轻载输出纹波过大

现象:


Vcc在空载或轻载时不足。


原因:


Vcc不足时,在启动电压(如12V)和关断电压(如8V)之间振荡IC在周期较长的间歇工作,短时间提供能量到输出,接着停止工作较长的时间,使得电容存储的能量不足以维持输出稳定,输出电压将会下降。


解决方法:


保证任何负载条件下,Vcc能够稳定供给。


现象:


Burst Mode时,间歇工作的频率太低,此频率太低,输出电容的能量不能维持稳定。


解决办法:


在满足待机功耗要求的条件下稍微提高间歇工作的频率,增大输出电容。


9、重载、容性负载不能启动

现象:


轻载能够启动,启动后也能够加重载,但是重载或大容性负载情况下不能启动。


一般设计要求:


无论重载还是容性负载(如10000uF),输入电压最低还是最低,20mS内,输出电压必须上升到稳定值。


原因及解决办法(保证Vcc在正常工作范围内的前提下):


下面以容性负载C=10000uF为例进行分析,


按规格要求,必须有足够的能量使输出在20mS内上升到稳定的输出电压(如5V)。


E=0.5*C*V^2


电容C越大,需要在20mS内从输入传输到输出的能量更大。



以芯片FSQ0170RNA为例如图所示,阴影部分总面积S就是所需的能量。要增加面积S,办法是:


1)增大峰值电流限流点I_limit,可允许流过更大电感电流Id:将与Pin4相接的电阻增大,从内部电流源Ifb分流更小,使作为电流限制参考电压的PWM比较器正输入端的电压将上升,即允许更大的电流通过MOSFET/变压器,可以提供更大的能量。


2)启动时,增加传递能量的时间,即延长Vfb的上升时间(到达OCP保护点前)。



对这款FSQ0170RNA芯片,电感电流控制是以Vfb为参考电压的,Vfb电压的波形与电感电流的包络成正比。控制Vfb的上升时间即可控制电感包络的上升时间,即增加传递能量的时间。


IC的OCP功能是检测Vfb达到Vsd(如6V)实现的。所以要降低Vfb斜率,就可以延长Vfb的上升时间。


输出电压未达到正常值时,如果反馈脚电压Vfb已经上升到保护点,传递能量时间不够。重载、容性负载启动时,输出电压建立较慢,加到光耦电压较低,通过光耦二极管的电流小,光耦光敏管高阻态(趋向关断)的时间较长。IC内部电流源给与反馈脚相接的电容充电较快,如果Vfb在这段时间内上升到保护点(如6V),MOSFET将关断。输出不能达到正常值,启动失败。


解决办法:


使输出电压达到正常值时,反馈脚电压Vfb仍然小于保护点。使Vfb远离保护点而缓慢上升,或延长反馈脚Vfb上升到保护点的时间,即降低Vfb的上升斜率,使输出有足够的时间上升到正常值。


A.增大反馈电容(C9),可以将Vfb的上升斜率降低,如图所示,由D线变成A线。但是反馈电容太大会影响正常工作状态,降低反馈速度,使输出纹波变大。所以此电容不能变化太大。


B.由于A方法有不足,将一个电容(C7)串连稳压管(D6,3.3V)并联到反馈脚。此法不会影响正常工作,如B线所示,当Vfb<3.3V时,稳压管不会导通,分流。上升3.3V时,稳压管进入稳压状态,电容C7开始充电分流,减小后续Vfb的上升斜率。C。在431的K-A端并联一个电容(C11),电源启动时,C11电压较低,并由光耦二极管和431的偏置电阻R10进行充电。这样光耦就有较大电流通过,使光耦光敏管阻抗较低而分流,Vfb将缓慢上升,如C线所示。R10×C11影响充电时间,也就影响输出的上升时间。


注意点:


1)增加反馈脚电容(包括稳压管串电容),对解决超大容性负载问题作用较小;


2)增大峰值电流限流点I_limit,同时也增加了稳态下的OCP点。需要在容性负载,输入最低情况下检查变压器是否会饱和;


3)如果要保持限流点,须使R10×C11更大,但在超大容性负载(10000uF)情况下,可能会增加5Vsb的上升时间超过20mS,此法需要检查动态响应是否受太大影响;


4)431的偏置电阻R10太小,431并联的C11要更大;


5)为了保证上升时间,增大OCP点和增大R10×C11方法可能要同时使用。


10、空载、轻载输出反跳

现象:


在输出空载或轻载时,关闭输入电压,输出(如5V)可能会出现如下图所示的电压反跳的波形。



原因:


输入关掉时,5V输出将会下降,Vcc也跟着下降,IC停止工作,但是空载或轻载时,巨大的PC电源大电容电压并不能快速下降,仍然能够给高压启动脚提供较大的电流使得IC重新启动,5V又重新输出,反跳。


解决方法:


在启动脚串入较大的限流电阻,使得大电容电压下降到仍然比较高的时候也不足以提供足够的启动电流给IC。

将启动接到整流桥前,启动不受大电容电压影响。输入电压关断时,启动脚电压能够迅速下降。


本文转载自:EEWORLD电子工程世界
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

贸泽电子设计圈由贸泽电子(Mouser Electronics)开发和运营,服务全球广大电子设计群体,贸泽电子分销750多家领先品牌,可订购500多万种在线产品,为客户提供一站式采购平台,欢迎关注我们,获取第一手的设计与产业资讯信息!


 ↓↓↓ 点击"阅读原文" 【查看更多信息】  


贸泽电子设计圈 贸泽电子(Mouser Electronics )为全球授权半导体和电子元器件授权分销商,分销750多家领先品牌,可订购500多万种在线产品,为设计工程师和采购人员提供一站式采购平台。
评论
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 90浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 144浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 79浏览
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 59浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 100浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 65浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 89浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 86浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 53浏览
  • 故障现象 一辆2007款法拉利599 GTB车,搭载6.0 L V12自然吸气发动机(图1),累计行驶里程约为6万km。该车因发动机故障灯异常点亮进厂检修。 图1 发动机的布置 故障诊断接车后试车,发动机怠速轻微抖动,发动机故障灯长亮。用故障检测仪检测,发现发动机控制单元(NCM)中存储有故障代码“P0300 多缸失火”“P0309 气缸9失火”“P0307 气缸7失火”,初步判断发动机存在失火故障。考虑到该车使用年数较长,决定先使用虹科Pico汽车示波器进行相对压缩测试,以
    虹科Pico汽车示波器 2025-01-15 17:30 53浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 70浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 128浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦