深入理解glibcmalloc:malloc()与free()原理图解

C语言与CPP编程 2023-04-26 08:30

击上方“C语言与CPP编程”,选择“关注/置顶/星标公众号

干货福利,第一时间送达!

你好,我是飞宇。

最近跟朋友一起创建了一个学习圈子,如果你是计算机小白新手或者打算学习Linux C/C++技术栈,欢迎了解一二。

本文分为三个等级自顶向下地分析了glibc中内存分配与回收的过程。本文不过度关注细节,因此只是分别从arena层次、bin层次、chunk层次进行图解,而不涉及有关指针的具体操作。

前言

在展开本文之前,先解释一下本文中会提到的三个重要概念:arena,bin,chunk。三者在逻辑上的蕴含关系一般如下图所示(图中的chunk严格来说应该是Free Chunk)。


三者概念的解释如下:

arena:通过sbrk或mmap系统调用为线程分配的堆区,按线程的类型可以分为2类:

  • main arena:主线程建立的arena;

  • thread arena:子线程建立的arena;

chunk:逻辑上划分的一小块内存,根据作用不同分为4类:

  • Allocated chunk:即分配给用户且未释放的内存块;

  • Free chunk:即用户已经释放的内存块;

  • Top chunk

  • Last Remainder chunk

bin:一个用以保存Free chunk链表的表头信息的指针数组,按所悬挂链表的类型可以分为4类:

  • Fast bin

  • Unsorted bin

  • Small bin

  • Large bin

在这里读者仅需明白arena的等级大于bin的等级大于(free)chunk的等级即可,即A>B>C。

tips:

实际内存中,main arena和thread arena的图示如下(单堆段)。


其中malloc_state的数据结构描述在源代码中发现该数据结构中保存着fastbinsY、top、last_remainder、bins这四个分别表示Fast bin、Top chunk、Last Remainder chunk、bins(Unsorted bin、 Small bin、Large bin)的数据。

Arena级分析

此处从Arena的层次分析内存分配与回收的过程。

main arena中的内存申请

main arena中的内存申请的流程如下图所示:


第一次申请

  • 根据申请内存空间大小是否达到mmap这一系统调用的分配阈值,决定是使用sbrk系统调用 还是mmap系统调用申请堆区。一般分配的空间比申请的要大,这样可以减少后续申请中向操作系统申请内存的次数。

  • 举例而言,用户申请1000字节的内存,实际会通过sbrk系统调用产生132KB的连续堆内存区域。

  • 然后将用户申请大小的内存返回。(本例中将返回1000字节的内存。)

后续申请

  • 根据arena中剩余空间的大小决定是继续分配还是扩容,其中包含扩容部分的为top chunk。

  • 然后将用户申请大小的内存返回。

tips:top chunk不属于任何bin!只有free chunk依附于bin!分配阈值具有默认值,但会动态调整;扩容具体过程见库函数sYSMALLOc 。

thread arena中的申请

thread arena中的内存申请的流程如下图所示:


其流程类似于main arena的,区别在于thread arena的堆内存是使用mmap系统调用产生的,而非同主线程一样可能会使用sbrk系统调用。

tips:Arena的数量与线程之间并不一定是一一映射的关系。如,在32位系统中有着“ Number of arena = 2 * number of cores + 1”的限制。

内存回收


线程释放的内存不会直接返还给操作系统,而是返还给’glibc malloc’。

bin级分析

此处从bin的层次分析内存分配与回收的过程。考虑到内存回收的过程比内存分配的过程要复杂,因此这里先分析内存回收的过程,再分析内存分配的过程。

内存回收

内存回收的流程如下图所示:


bin可以分为4类:Fast bin、Unsorted bin、Small bin和 Large bin。保存这些bin的数据结构为fastbinsY以及bins:

fastbinsY:用以保存fast bins。(可索引大小16~64B的内存块)

bins:用以保存unsorted、small以及large bins,共计可容纳126个:

  • Bin 1 – unsorted bin

  • Bin 2 to Bin 63 – small bin(可索引大小<512B的内存块)

  • Bin 64 to Bin 126 – large bin(可索引大小≥512B的内存块)

在内存被释放的时候,被释放内存块会根据其大小而被添加入对应的bin中:

  • 16~64B的内存块会被添加入fastbinY中

  • samll及large的会添加在bins中的unsorted bins中。

tips:small bins和large bins中索引的内存块是在内存分配的过程中被添加在相应的bin中的。

内存分配

内存分配的流程如下图所示:


我们知道,内存分配的最终目的在于分配出合适大小的内存块返回给用户。在实现中即为在bin或top chunk中找到(并分割出)所需内存块,其检索的优先级从高到低分别是:

  1. fastbinY

  2. small bins

  3. unsorted bins

  4. large bins

  5. top bins

tips: Fast bin、Unsorted bin、Small bin和 Large bin中保存的都是用户曾经释放的内存块(可能经过合并);top chunk包含Arena扩容的部分,不属于任何bin!

chunk级分析

本文不过度关注操作细节,因此有关内存回收的过程就不赘述了。下图即内存分配的详细过程图:

tips:保存或新窗口打开图片可以查看原图。

具体分配说明参见下列引用内容:

1、获取分配区的锁,为了防止多个线程同时访问同一个分配区,在进行分配之前需要取得分配区域的锁。线程先查看线程私有实例中是否已经存在一个分配区,如果存在尝试对该分配区加锁,如果加锁成功,使用该分配区分配内存,否则,该线程搜索分配区循环链表试图获得一个空闲(没有加锁)的分配区。如果所有的分配区都已经加锁,那么ptmalloc会开辟一个新的分配区,把该分配区加入到全局分配区循环链表和线程的私有实例中并加锁,然后使用该分配区进行分配操作。开辟出来的新分配区一定为非主分配区,因为主分配区是从父进程那里继承来的。开辟非主分配区时会调用mmap()创建一个sub-heap,并设置好top chunk。


2、将用户的请求大小转换为实际需要分配的chunk空间大小。


3、判断所需分配chunk的大小是否满足chunk_size <= max_fast (max_fast 默认为 64B),如果是的话,则转下一步,否则跳到第5步。


4、首先尝试在fast bins中取一个所需大小的chunk分配给用户。如果可以找到,则分配结束。否则转到下一步。


5、判断所需大小是否处在small bins中,即判断chunk_size < 512B是否成立。如果chunk大小处在small bins中,则转下一步,否则转到第6步。


6、根据所需分配的chunk的大小,找到具体所在的某个small bin,从该bin的尾部摘取一个恰好满足大小的chunk。若成功,则分配结束,否则,转到下一步。


7、到了这一步,说明需要分配的是一块大的内存,或者small bins中找不到合适的 chunk。于是,ptmalloc首先会遍历fast bins中的chunk,将相邻的chunk进行合并,并链接到unsorted bin中,然后遍历unsorted bin中的chunk,如果unsorted bin只有一个chunk,并且这个chunk在上次分配时被使用过,并且所需分配的chunk大小属于small bins,并且chunk的大小大于等于需要分配的大小,这种情况下就直接将该chunk进行切割,分配结束,否则将根据chunk的空间大小将其放入small bins或是large bins中,遍历完成后,转入下一步。


8、到了这一步,说明需要分配的是一块大的内存,或者small bins和unsorted bin中都找不到合适的 chunk,并且fast bins和unsorted bin中所有的chunk都清除干净了。从large bins中按照“smallest-first,best-fit”原则,找一个合适的 chunk,从中划分一块所需大小的chunk,并将剩下的部分链接回到bins中。若操作成功,则分配结束,否则转到下一步。


9、如果搜索fast bins和bins都没有找到合适的chunk,那么就需要操作top chunk来进行分配了。判断top chunk大小是否满足所需chunk的大小,如果是,则从top chunk中分出一块来。否则转到下一步。


10、到了这一步,说明top chunk也不能满足分配要求,所以,于是就有了两个选择: 如果是主分配区,调用sbrk(),增加top chunk大小;如果是非主分配区,调用mmap来分配一个新的sub-heap,增加top chunk大小;或者使用mmap()来直接分配。在这里,需要依靠chunk的大小来决定到底使用哪种方法。判断所需分配的chunk大小是否大于等于 mmap分配阈值,如果是的话,则转下一步,调用mmap分配,否则跳到第12步,增加top chunk 的大小。


11、使用mmap系统调用为程序的内存空间映射一块chunk_size align 4kB大小的空间。然后将内存指针返回给用户。


12、判断是否为第一次调用malloc,若是主分配区,则需要进行一次初始化工作,分配一块大小为(chunk_size + 128KB) align 4KB大小的空间作为初始的heap。若已经初始化过了,主分配区则调用sbrk()增加heap空间,分主分配区则在top chunk中切割出一个chunk,使之满足分配需求,并将内存指针返回给用户。


原文:https://blog.csdn.net/maokelong95/article/details/52006379

文章来源于网络,版权归原作者所有,如有侵权,请联系删除。

EOF


你好,我是飞宇,本硕均于某中流985 CS就读,先后于百度搜索以及字节某电商部门担任Linux C/C++后端研发工程师。

同时,我也是知乎博主@韩飞宇,日常分享C/C++、计算机学习经验、工作体会,欢迎点击阅读原文围观我分享的学习经验

我组建了一些社群一起交流,群里有大牛也有小白,如果你有意可以一起进群交流。

欢迎你添加我的微信,我拉你进技术交流群。此外,我也会经常在微信上分享一些计算机学习经验以及工作体验,还有一些内推机会。

扫描上方二维码,加我微信

我的私人微信


👇点击阅读原文查看你错过的宝藏

C语言与CPP编程 C语言/C++开发,C语言/C++基础知识,C语言/C++学习路线,C语言/C++进阶,数据结构;算法;python;计算机基础等
评论
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 102浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 111浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 111浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 58浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 73浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦