今天我们将围绕交错式 ADC 转换器展开。当 ADC 转换器交错时,两个或多个具有定义的时钟关系的 ADC 转换器用于同时对输入信号进行采样并产生组合输出信号,从而导致采样带宽为多个单独的 ADC 转换器。
交错式 ADC 转换器无疑是推动更高效接口的一部分。交错式 ADC 转换器为系统设计人员提供了多项优势。然而,额外的转换器带宽带来了大量需要在 FPGA 或 ASIC 中处理的数据。必须有一些有效的方法来处理来自转换器的所有数据。在采样率在千兆采样范围内的转换器中继续使用 LVDS 接口变得不切实际。因此,JESD204B 是将大量数据从转换器获取到 FPGA 或 ASIC 的一种很好、高效的方法。
让我们花点时间离开界面,看一下交错。在通信基础设施中,除了对 DPD(数字预失真)等线性化技术的更宽带宽要求之外,还不断推动更高采样率的 ADC 以支持多频段、多载波无线电。在军事和航空航天领域,更高采样率的 ADC 支持多用途系统,可用于通信、电子监控和雷达等等。在工业仪器仪表中,对更高采样率 ADC 的需求一直在增加,以便能够准确测量更高速度的信号。让我们从了解交错式 ADC 的基础知识开始讨论。
使用m 个 ADC 可以将有效采样率提高 m倍 。为了简单易懂,我们只关注两个ADC的情况。在这种情况下,如果两个采样率均为 f S的 ADC 交错放置,则最终采样率仅为 2f S。这两个 ADC 必须具有时钟相位关系才能正确交错。时钟相位关系由等式 1 控制,其中n 是特定的 ADC,m 是 ADC 的总数。
例如,两个采样率为 250MSPS 的 ADC 交错以实现 500MSPS 的采样率。在这种情况下,可以使用等式 1 推导两个 ADC 的时钟相位关系,并由等式 2 和 3 给出。
既然我们知道了时钟相位关系,就可以检查样本的构造了。图 1 直观地表示了两个 250MSPS 交错式 ADC 的时钟相位关系和示例结构。
图1
两个交错式 250MSPS ADC——基本图
请注意 180° 时钟相位关系以及样本是如何交错的。输入波形由两个 ADC 交替采样。在这种情况下,交织是通过使用除以二的 500MHz 时钟输入来实现的。分频器负责将所需的时钟相位发送到每个 ADC。
这个概念的另一种表示如图 2 所示。
图 2
两个交错式 ADC——时钟和采样
通过交错使用这两个 250MSPS ADC,采样率提高到 500MSPS。这将转换器奈奎斯特区的宽度从 125MHz 扩展到 250MHz,使工作可用带宽加倍。增加的操作带宽带来了许多优势。无线电系统可以增加支持的频段数量;雷达系统可以提高空间分辨率,测量设备可以实现更大的模拟输入带宽。
还有一些关于可以交错多少个转换器的问题,所以我想我会简要介绍一下。还有一些关于交错 ADC 挑战的问题。在我们看一看之前,让我们讨论一些好处。
交错的好处跨越市场的多个部分。最理想的好处是交错式 ADC 的更宽奈奎斯特区可以增加带宽。我们将再次以两个 500MSPS ADC 交错创建 1000MSPS 采样率为例。这是交错两个 ADC 所允许的更宽带宽的表示。请注意,f S 显示的是一个转换器;交错式转换器采样率为 2 X f S。
两个交错的 ADC — 奈奎斯特区。
这为许多不同的应用创造了优势。许多设计中的系统要求天生就领先于商业 ADC 技术。无论 ADC 采样率有多高,市场似乎都需要更快的速率。交织允许关闭一些这种差距。军事和航空航天应用正在推动更高的带宽以实现更好的空间识别。此外,后端通信需要增加信道带宽。
随着蜂窝标准增加信道带宽和工作频段的数量,对 ADC 中可用带宽的要求也越来越高。在某些市场和应用中,还希望转向直接 RF 采样,这样无线电设计的级数就会更少,并且可以去掉解调器。在 ADC 上具有足够高的采样率也开启了放宽时钟要求的可能性。对齐 ADC 和 DAC 时钟以简化系统设计成为可能。在仪器仪表和测量应用中,需要更高的带宽来采集和测量信号。
增加的采样率为这些应用程序提供了更多的带宽。它允许更轻松的频率规划,并降低了通常用于 ADC 输入的抗混叠滤波器的复杂性和成本。
有了所有这些巨大的好处,人们不得不对价格感到疑惑。与大多数事情一样,天下没有免费的午餐。交错式 ADC 提供更高的带宽和其他好处,但也带来了一些挑战。
我们可以将多少个转换器放在一起?让我们简单了解一下交错式 ADC 的时钟要求。您可能还记得我上一篇博客中的等式:
当m等于 2 时,求解这个方程非常容易 。然而,当m等于 8 时,时钟要求变得更加困难 。代入m 并求解八个转换器的方程式可得到所需的时钟相位 0、45、90、135、180、225、270 和 315 度。如果输入时钟频率较低,那似乎还不算太糟糕,但交错的全部意义在于实现高采样率。
时钟频率的实际情况是 1GHz。这意味着时钟电路必须能够将输入时钟向下分频并创建相隔 125ps 的相位,而且必须准确地做到这一点。时钟上的任何错误或抖动都会降低性能。
还有其他事情需要考虑。当两个或多个转换器交错放置时,各个转换器之间会出现不匹配。我们还必须考虑转换器的模拟输入带宽。如何处理这些不匹配?我们如何处理模拟输入带宽?
从基础到高级的ADC讲座,将涵盖高速ADC设计的原理、传统架构和最先进的设计。第一部分首先回顾了ADC的基本知识,包括采样、开关电容和量化理论。接下来,介绍了经典ADC架构的基础和设计实例,如闪存、SAR和流水线ADC。然后,本教程将对混合型ADC架构进行总体概述,这就结束了第一部分。在第二部分,首先描述了ADC的度量。然后,介绍混合或非混合架构的各种先进设计。该教程最后将以数字辅助解决技术结束。
>>>点击图片了解课程详情!
今天小编带来了:ISSCC2023套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。
1、深入理解SerDes(Serializer-Deserializer)之一
2、深入理解SerDes(Serializer-Deserializer)之二
3、科普:深入理解SerDes(Serializer-Deserializer)之三
4、资深工程师的ESD设计经验分享
5、干货分享,ESD防护方法及设计要点!
6、科普来了,一篇看懂ESD(静电保护)原理和设计!
7、锁相环(PLL)基本原理 及常见构建模块
8、当锁相环无法锁定时,该怎么处理的呢?
9、高性能FPGA中的高速SERDES接口
10、什么是毫米波技术?它与其他低频技术相比有何特点?
11、如何根据数据表规格算出锁相环(PLL)中的相位噪声
12、了解模数转换器(ADC):解密分辨率和采样率
13、究竟什么是锁相环(PLL)
14、如何模拟一个锁相环
15、了解锁相环(PLL)瞬态响应
16、如何优化锁相环(PLL)的瞬态响应
17、如何设计和仿真一个优化的锁相环
18、锁相环(PLL) 倍频:瞬态响应和频率合成
19、了解SAR ADC
20、了解 Delta-Sigma ADC
21、什么是数字 IC 设计?
22、什么是模拟 IC 设计?
23、什么是射频集成电路设计?
24、学习射频设计:选择合适的射频收发器 IC
25、连续时间 Sigma-Delta ADC:“无混叠”ADC
26、了解电压基准 IC 的噪声性能
27、数字还是模拟?I和Q的合并和分离应该怎么做?
28、良好通信链路性能的要求:IQ 调制和解调
29、如何为系统仿真建模数据转换器?
30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)
31、使用有效位数 (ENOB) 对 ADC 进行建模
32、以太网供电 (PoE) 的保护建议
33、保护高速接口的设计技巧
34、保护低速接口和电源电路设计技巧
35、使用互调多项式和有效位数对 ADC 进行建模
36、向 ADC 模型和 DAC 建模添加低通滤波器
37、揭秘芯片的内部设计原理和结构
38、Delta-Sigma ADCs中的噪声简介(一)
39、Delta-Sigma ADCs中的噪声简介(二)
40、Delta-Sigma ADCs 中的噪声简介(三)
41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)
42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)
43、放大器噪声对 Delta-Sigma ADCs 的影响(一)
44、放大器噪声对 Delta-Sigma ADCs 的影响(二)
45、参考电压噪声如何影响 Delta Sigma ADCs
46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声
47、时钟信号如何影响精密ADC
48、了解电源噪声如何影响 Delta-Sigma ADCs
49、运算放大器简介和特性
50、使用 Delta-Sigma ADCs 降低电源噪声的影响
51、如何设计带有运算放大器的精密电流泵
52、锁定放大器的基本原理
53、了解锁定放大器的类型和相关的噪声源
54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术
55、干货!《实用的RFIC技术》课程讲义
56、如何在您的下一个 PCB 设计中消除反射噪声
57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!
58、帮助你了解 SerDes!
1、免费公开课:ISCAS 2015 :The Future of Radios_ Behzad Razavi
2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)
3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)
4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs
5、免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)
6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)
7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动
8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi
9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块
10、免费公开课:ISSCC2020-小数N分频数字锁相环设计
11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)
12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础
13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础
14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)
15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)
16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe)
17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)
点击下方“公众号”,关注更多精彩
半导体人才招聘服务平台