基于STM32的开源简易示波器项目

一起学嵌入式 2023-04-24 07:50

扫描关注一起学嵌入式,一起学习,一起成长


一、前言

该项目是基于正点原子精英板制作的一个简易示波器,可以读取信号的频率和幅值,并可以通过按键改变采样频率和控制屏幕的更新暂停。

二、硬件接线

  • 将PA6与PA4相连,可观察到正弦波。
  • 将PA6与PA5相连,可观察到三角波/噪声(默认三角波)。
  • KEY_UP控制波形的更新和暂停。
  • KEY_1降低采样率。
  • KEY_0提高采样率。

三、信号的采集

信号的采集主要是依靠ADC(通过定时器触发采样,与在定时器中断中开启一次采样的效果类似,以此来控制采样的间隔时间相同),然后通过DMA将所采集的数据从ADC的DR寄存器转移到一个变量中,此时完成一次采样。

由于设定采集一次完整的波形需要1024个点,即需要连续采集1024次才算一次完整的波形采样(需要采集1024个点的原因在后面会提到)。

因此我们还需创建一个数组用于存储这些数据,并在DMA中断中,将成功转移到变量中的数据依次存储进数组(注意此数组中存入的数据是12位的数字量,还未做回归处理),完成1024个数据的采样和储存,用于后续在LCD上进行波形的显示和相关参数的处理。

此案例用到的是ADC1的通道6(即PA6口)进行数据的采样,主要需注意将ADC转换的触发方式改为定时器触发(我用的是定时器2的通道2进行触发,由于STM32手册提示只有在上升沿时可以触发ADC,因此我们需要让定时器2的通道2每隔固定的时间产生一个上升沿)。

将定时器2设置成PWM模式,即可令ADC1在定时器2的通道2每产生一次上升沿时触发采样,后续即可通过改变PWM的频率(即定时器的溢出频率),便可控制采样的频率。

四、代码配置

ADC的配置:

/**********************************************************
简介:ADC1-CH6初始化函数
***********************************************************/
                  
void  Adc_Init(void)
{  
 ADC_InitTypeDef ADC_InitStructure; 
 GPIO_InitTypeDef GPIO_InitStructure;

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_ADC1, ENABLE );   //使能ADC1通道时钟
 

 RCC_ADCCLKConfig(RCC_PCLK2_Div6);   //设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M

 //PA6 作为模拟通道输入引脚                         
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;  //模拟输入
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 GPIO_Init(GPIOA, &GPIO_InitStructure); 

 ADC_DeInit(ADC1);  //复位ADC1,将外设 ADC1 的全部寄存器重设为缺省值

 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1工作在独立模式
 ADC_InitStructure.ADC_ScanConvMode = DISABLE; //模数转换工作在单通道模式
 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //模数转换工作在非连续转换模式
 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_CC2; //转换由定时器2的通道2触发(只有在上升沿时可以触发)
 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐
 ADC_InitStructure.ADC_NbrOfChannel = 1//顺序进行规则转换的ADC通道的数目
 ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器   

 ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1
 
 ADC_DMACmd(ADC1, ENABLE); //ADC的DMA功能使能
 
 ADC_ResetCalibration(ADC1); //使能复位校准  
  
 ADC_RegularChannelConfig(ADC1, ADC_Channel_6, 1, ADC_SampleTime_1Cycles5 );//ADC1通道6,采样时间为239.5周期  
  
 ADC_ResetCalibration(ADC1);//复位较准寄存器
  
 while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束
 
 ADC_StartCalibration(ADC1);  //开启AD校准
 
 while(ADC_GetCalibrationStatus(ADC1));  //等待校准结束
 
 ADC_SoftwareStartConvCmd(ADC1, ENABLE);  //使能指定的ADC1的软件转换启动功能

}   

定时器的配置:

/******************************************************************
函数名称:TIM2_PWM_Init(u16 arr,u16 psc)
函数功能:定时器3,PWM输出模式初始化函数
参数说明:arr:重装载值
   psc:预分频值
备    注:通过TIM2-CH2的PWM输出触发ADC采样
*******************************************************************/
  
void TIM2_PWM_Init(u16 arr,u16 psc)
{  
 GPIO_InitTypeDef GPIO_InitStructure;
 TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
 TIM_OCInitTypeDef  TIM_OCInitStructure;
 
 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); //使能定时器2时钟
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA  | RCC_APB2Periph_AFIO, ENABLE);  //使能GPIO外设和AFIO复用功能模块时钟
 
   //设置该引脚为复用输出功能,输出TIM2 CH2的PWM脉冲波形 GPIOA.1
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; //TIM_CH2
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIO
 
   //初始化TIM3
 TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值
 TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 
 TIM_TimeBaseStructure.TIM_ClockDivision = 0//设置时钟分割:TDTS = Tck_tim
 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位
 
 //初始化TIM2 Channel2 PWM模式  
 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式2
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性:TIM输出比较极性高
 TIM_OCInitStructure.TIM_Pulse=1000//发生反转时的计数器数值,用于改变占空比
 TIM_OC2Init(TIM2, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM2

 TIM_CtrlPWMOutputs(TIM2, ENABLE);//使能PWM输出
 
 TIM_Cmd(TIM2, ENABLE);  //使能TIM2
}

DMA配置:

/******************************************************************
函数名称:MYDMA1_Config()
函数功能:DMA1初始化配置
参数说明:DMA_CHx:DMA通道选择
   cpar:DMA外设ADC基地址
   cmar:DMA内存基地址
   cndtrDMA通道的DMA缓存的大小
备    注:
*******************************************************************/

void MYDMA1_Config(DMA_Channel_TypeDef* DMA_CHx,u32 cpar,u32 cmar,u16 cndtr)
{
 DMA_InitTypeDef DMA_InitStructure;
 NVIC_InitTypeDef NVIC_InitStructure;
 
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //使能DMA传输
 
    DMA_DeInit(DMA_CHx);   //将DMA的通道1寄存器重设为缺省值
 DMA_InitStructure.DMA_PeripheralBaseAddr = cpar;  //DMA外设ADC基地址
 DMA_InitStructure.DMA_MemoryBaseAddr = cmar;  //DMA内存基地址
 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;  //数据传输方向,从外设读取发送到内存//
 DMA_InitStructure.DMA_BufferSize = cndtr;  //DMA通道的DMA缓存的大小
 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;  //外设地址寄存器不变
 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;  //内存地址寄存器递增
 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;  //数据宽度为16位
 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; //数据宽度为16位
 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;  //工作在循环模式
 DMA_InitStructure.DMA_Priority = DMA_Priority_High; //DMA通道 x拥有高优先级 
 DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;  //DMA通道x没有设置为内存到内存传输
 DMA_Init(DMA_CHx, &DMA_InitStructure);  //ADC1匹配DMA通道1
 
 DMA_ITConfig(DMA1_Channel1,DMA1_IT_TC1,ENABLE); //使能DMA传输中断 
 
 //配置中断优先级
 NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn;
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0 ;
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;  
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;   
 NVIC_Init(&NVIC_InitStructure); 

 DMA_Cmd(DMA1_Channel1,ENABLE);//使能DMA通道
}

注意:

  1. 由于在设置PWM时将TIM_Pulse默认设置为1000,因此在初始化定时器2时,TIM_Period的值不能小于该值,可自行修改。TIM_Pulse的值并不会影响采样频率。

  2. 采样频率= 定时器2溢出频率=SYSCLK/预分频值/溢出值因此如果将TIM_Pulse设为1,TIM_Period设为2,TIM_Prescaler设为1,理论上采样频率最高可达36Mhz。

五、数据的处理

数据的处理主要是要求出信号的频率和幅值等相关参数。幅值可以通过找出之前存储1024个点的数组中最大最小值,回归处理过后算出差值。

难点主要在于频率的求取。一个信号中可能包含多种频率成分,而我显示的是幅值最大的频率分量(当然其他频率也可获得)。这里便用到了STM32提供的DSP库中的FFT(快速傅里叶变换),DSP库在最后的源码中有。

需要采样1024个点的原因:FFT算法要求样本数为2的n次方,而DSP库中提供了64,256和1024样本数对应的库函数,因此选用1024最大样本数可以使频率分辨率最小,更加精确。(定义频率分辨率f0=fs/N,其中fs等于采样率,N为采样点数)

需注意:FFT后的输出不是实际的信号频率,需要经过转换。f(k)=k*(fs/N),其中f(k)是实际频率,k是实际信号的最大幅度频率所对应的数。(详见下面代码,分享的源代码中公式有误,未重新上传)

获取频率的函数:

#define NPT 1024//一次完整采集的采样点数

/******************************************************************
函数名称:GetPowerMag()
函数功能:计算各次谐波幅值
参数说明:
备  注:先将lBufOutArray分解成实部(X)和虚部(Y),然后计算幅值(sqrt(X*X+Y*Y)
*******************************************************************/

void GetPowerMag(void)
{
    float X,Y,Mag,magmax;//实部,虚部,各频率幅值,最大幅值
    u16 i;
 
 //调用自cr4_fft_1024_stm32
 cr4_fft_1024_stm32(fftout, fftin, NPT); 
 //fftin为傅里叶输入序列数组,ffout为傅里叶输出序列数组
 
    for(i=1; i2; i++)
    {
  X = (fftout[i] << 16) >> 16;
  Y = (fftout[i] >> 16);
  
  Mag = sqrt(X * X + Y * Y); 
  FFT_Mag[i]=Mag;//存入缓存,用于输出查验
  //获取最大频率分量及其幅值
  if(Mag > magmax)
  {
   magmax = Mag;
   temp = i;
  }
    }
 F=(u16)(temp*(fre*1.0/NPT));//源代码中此公式有误,将此复制进去
 
 LCD_ShowNum(280,180,F,5,16);

六、模拟正弦波输出

此正弦波输出是用于调试示波器,观察显示和实际是否相同。主要利用DAC输出,在定时器3的中断中不断改变DAC的输出值,产生一个正弦波。因此改变正弦波的频率可以通过更改定时器3的溢出频率。(采用的PA4口进行输出)

在初始化时,我将定时器3的重装载值设置为40,预分频值设置为72,正弦波输出频率为72Mhz/40/72/1024≈24.5Hz(1024是因为将一个周期正弦波均分成1024个输出点,详见下面函数InitBufInArray())。

经采样处理后显示为24-25Hz,与实际值接近。(但是当采样频率提高到最大3.6kHz时,频率显示为32Hz左右,原因未知)

下面是相关代码:

u16 magout[NPT];
/******************************************************************
函数名称:InitBufInArray()
函数功能:正弦波值初始化,将正弦波各点的值存入magout[]数组中
参数说明:
备    注:
*******************************************************************/

void InitBufInArray(void)
{
    u16 i;
    float fx;
    for(i=0; i    {
        fx = sin((PI2*i)/NPT);
        magout[i] = (u16)(2048+2048*fx);
    }
}

/******************************************************************
函数名称:sinout()
函数功能:正弦波输出
参数说明:
备    注:将此函数置于定时器中断中,可模拟输出正弦波
*******************************************************************/

void sinout(void)
{
 static u16 i=0;
 DAC_SetChannel1Data(DAC_Align_12b_R,magout[i]);
 i++;
 if(i>=NPT)
  i=0;
}

七、模拟噪声或三角波输出

模拟噪声或三角波输出可直接通过配置DAC,利用芯片内部的发生器产生。DAC2的转换由定时器4的TRGO触发(事件触发)。同时需要注意设置TRGO由更新事件产生。

若为三角波输出,频率=72Mhz/定时器重装载值/预分频系数/幅值/2

例如:初始化定时器的重装载值为2,预分频系数为36,幅值为最大(4096),即Freq=72Mhz/2/36/4096/2≈122Hz

具体代码如下所示:

void Dac2_Init(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
    DAC_InitTypeDef DAC_InitType;

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );   //使能PORTA通道时钟
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE );   //使能DAC通道时钟 

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;     // 端口配置
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;    //模拟输入
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
     
    DAC_InitType.DAC_Trigger=DAC_Trigger_T4_TRGO; //定时器4触发
    DAC_InitType.DAC_WaveGeneration=DAC_WaveGeneration_Noise;//产生噪声
    //DAC_WaveGeneration_Triangle产生三角波
    DAC_InitType.DAC_LFSRUnmask_TriangleAmplitude =  DAC_TriangleAmplitude_4095;//幅值设置为最大,即3.3V
    DAC_InitType.DAC_OutputBuffer=DAC_OutputBuffer_Disable ; //DAC1输出缓存关闭 BOFF1=1
    DAC_Init(DAC_Channel_2,&DAC_InitType);  //初始化DAC通道2

    DAC_Cmd(DAC_Channel_2, ENABLE);  //使能DAC-CH2
 
    DAC_SetChannel1Data(DAC_Align_12b_R, 0);  //12位右对齐数据格式设置DAC值 
}
void TIM4_Int_Init(u16 arr,u16 psc)
{
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;

    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); //时钟使能

    TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值  计数到5000为500ms
    TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值  10Khz的计数频率  
    TIM_TimeBaseStructure.TIM_ClockDivision = 0;     //设置时钟分割:TDTS = Tck_tim
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
    TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位

    TIM_SelectOutputTrigger(TIM4, TIM_TRGOSource_Update);//触发外设方式为更新触发
 
    TIM_Cmd(TIM4, ENABLE);  //使能TIMx外设
        
}

八、显示函数与按键控制

  1. 显示波形只需将所获得的1024个采样数据选择一部分进行显示大致思路如下:
u16 pre_vol;//当前电压值对应点的纵坐标
u16 past_vol;//前一个电压值对应点的纵坐标
//adcx[]数组及通过DMA存入的1024个原始数据
pre_vol = 50+adcx[x]/4096.0*100;
LCD_DrawLine(x,past_vol,x+1,pre_vol);//根据实际,打点位置可进行相应更改
past_vol = pre_vol;
  1. 按键的控制是在外部中断中进行(正点原子资料中提供相应参考代码)比较重要的是改变采样频率。

工程地址

https://gitee.com/silent-rookie/Simple-Oscilloscope

公众号后台回复【2009】,即可获取打包好的项目文件。


个人微信开放,扫码添加,进高质量嵌入式交流群

关注我【一起学嵌入式】,一起学习,一起成长。



觉得文章不错,点击“分享”、“”、“在看” 呗!

一起学嵌入式 公众号【一起学嵌入式】,RTOS、Linux编程、C/C++,以及经验分享、行业资讯、物联网等技术知
评论 (0)
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 74浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 190浏览
  • 在过去的很长一段时间里,外卖市场呈现出美团和饿了么双寡头垄断的局面。美团凭借先发优势、强大的地推团队以及精细化的运营策略,在市场份额上长期占据领先地位。数据显示,截至2024年上半年,美团外卖以68.2%的市场份额领跑外卖行业,成为当之无愧的行业老大。其业务广泛覆盖,从一线城市的繁华商圈到二三线城市的大街小巷,几乎无处不在,为无数消费者提供便捷的外卖服务。饿了么作为阿里本地生活服务的重要一环,依托阿里强大的资金和技术支持,也在市场中站稳脚跟,以25.4%的份额位居第二。尽管市场份额上与美团有一定
    用户1742991715177 2025-05-06 19:43 79浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 428浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 352浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 538浏览
  • 文/Leon编辑/cc孙聪颖‍《中国家族企业传承研究报告》显示,超四成“企二代” 明确表达接班意愿,展现出对家族企业延续发展的主动担当。中国研究数据服务平台(CNRDS)提供的精准数据进一步佐证:截至 2022 年,已有至少 280 家上市家族企业完成权杖交接,其中八成新任掌门人为创始人之子,凸显家族企业代际传承中 “子承父业” 的主流模式。然而,对于“企二代” 而言,接棒掌舵绝非易事。在瞬息万变的商业环境中,他们既要在白热化的市场竞争中开拓创新、引领企业突破发展瓶颈,又需应对来自父辈管理层的经
    华尔街科技眼 2025-05-06 18:17 27浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 308浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 290浏览
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 121浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 112浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 282浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦