PCB信号完整性设计和测试应用

射频百花潭 2023-04-24 00:02



    高频高速电子产品的快速发展需要PCB具有高性能的系统结构,而不仅是有支撑作用的电子元器件。目前的电子系统设计普遍信号频率高于100 MHz,用来进行信号传输的高频高速印刷电路板也越来越容易受到信号完整性问题的影响。信号传输过程更容易出现反射、串扰等信号完整性问题,且频率越高、传输速率越快,信号损耗越严重,如何降低信号在传输过程中的损耗、保证信号完整性是高频高速PCB发展中的巨大挑战。高频时代PCB产品的信号完整性由PCB原材料和PCB设计产品两部分来提升。PCB材料的电性能可以通过测试介质层的介电常数、介质损耗以及导体铜箔粗糙度值来衡量;PCB产品的电性能主要通过测试阻抗和插入损耗(传输损耗)来衡量。主要介绍PCB原材料介质层的介电常数、介质损耗和导体铜箔粗糙度测试以及PCB产品阻抗、插入损耗设计和测试应用。


5G、物联网以及无人驾驶技术都处于高速发展阶段,需要在高频高速条件下传输信号。PCB(Printed Circuit Board,印制电路板)系统需要成为具有高性能的系统结构,而不再仅是起支撑作用的电子元器件。目前,电子系统设计普遍信号频率高于100 MHz,用来进行信号传输的高频高速印刷电路板也越来越容易受到信号完整性问题的影响。信号传输过程更容易出现反射、串扰等信号完整性问题,且频率越高、传输速率越快,信号损耗越严重,如何降低信号在传输过程中的损耗、保证信号完整性是高频高速PCB发展中的巨大挑战。

高频时代PCB产品的信号完整性电性能从PCB原材料和PCB设计产品两部分来提升。PCB材料的电性能可以通过测试介质层的介电常数( D k )、介质损耗( D f )以及导体铜箔粗糙度值来衡量;PCB产品的电性能主要通过测试阻抗和插入损耗(传输损耗)来衡量。

本文主要介绍PCB原材料介质层的介电常数、介质损耗和导体铜箔粗糙度测试以及PCB产品阻抗、插入损耗设计和测试应用。


1  PCB原材料介质层的

参数介绍与测试

1.1 PCB原材料介质层的 D k 、 D f 及其测试
1.1.1 介电常数( D k )、介质损耗( D f )

介电常数:材料如果在受到外部电场作用时能够储存电能,就称为“电介质”。比如说,电容可以存储电荷,而当电容平板中间填充有介质时,存储的电荷会更多。介电常数越大,储存的电荷就越多,阻碍信号传输能力越大。

介质损耗:绝缘材料或电介质在交变电场中,由于介质电导和介质极化的滞后效应,使电介质内流过的电流相量和电压相量之间产生一定的相位差,即形成一定的相角,此相角的正切值即损耗因子 D f ,由介质电导和介质极化的滞后效应引起的能量损耗叫做介质损耗,也就是说, D f 越高,介质电导和介质极化滞后效应越明显,电能损耗或信号损失越多,是电介质损耗电能能力的表征物理量,也是绝缘材料损失信号能力的表征物理量。因此,PCB材料介质层的 D k , D f 越低,制作出的PCB产品插入损耗越低。

1.1.2 SPDR(Split Post Dielectric Resonator)法测试 D k 、 D f

测试高频材料电性能特性的方法很多,有传输线法、自由空间法、同轴探针法和谐振腔法,其中谐振腔法是最适合用于低损耗材料的测试。SPDR就是其中一种分离介质谐振腔法,是单频点的低损耗测试方法。SPDR的结构使用了极低损失的介电材料,使其能够建立具有更高 Q 因数且热稳定性优于传统全金属腔体的谐振器。SPDR的主要优势是:

1)较之传输反射法具有出色精度;

2)能够测试低损耗材料(传输反射技术无法测试损耗较低的材料);

3)不需要特殊的样本制备,可对基片和介质层进行方便、快速的无损测试。

SPDR法是无损测试方法,通过测定共振器内插入介质层前后的共振频率和 Q 值的变化量,测试 D k 和D f 值,测试夹具与测试原理如图1所示。不同频率使用不同的共振器目前提供的SPDR夹具可从1.1 GHz覆盖到15 GHz。

图1 趋肤深度与频率的关系
1.2 导体铜箔粗糙度的测试
1.2.1 导体铜箔趋肤效应

在高频高速条件下,信号传输越来越集中于导体“表层”,即趋肤效应(Skin Effect)。当频率达1 GHz时,其信号在导体表面的趋肤深度仅为2.10 µm;当信号传输频率提高到10 GHz时,其信号在导体表面的趋肤深度为0.66 µm;而在毫米波频段(>30 GHz),趋肤深度进一步降低至0.40 µm以下(如图1所示)。如果导体表面粗糙度大于趋肤深度时,信号传输仅在粗糙度的厚度范围内进行,使传输信号的驻波、反射越来越严重,并导致信号传输路径变长,增加传输损耗(如图2所示),信号在导体表面粗糙度低于趋肤深度时,传输路径短,降低传输损耗(如图3所示)。因此,导体铜箔粗糙度越低,制作出的PCB产品插入损耗(传输损耗)越低。

图2 信号在粗糙度大的铜箔表面传输

图3 信号在粗糙度低的铜箔表面传输

1.2.2 粗糙度测试

常规粗糙度的测试参数有:

1)线粗糙度:R a , R z, R q ;

2)面粗糙度:S a , S z , S q , S dr 。

R a , R z, R q 和 S a , S z , S q 粗糙度的定义同常规粗糙度的定义,这里需要特别强调的是 S dr 粗糙度。

S dr 是界面扩展面积比,定义区域的扩展面积(表面积)表示相对于定义区域的面积增大了多少。如图4所示,其计算公式为:

图4 S dr 的定义图

为什么要测 S dr ?如图5所示,样品1与样品2测量的 S a 值相同,测量 S dr 后可以发现样品2表面粗糙度较大。

图5 相同 S a 值样品的 S dr 不同

2 PCB产品阻抗设计和测试应用

2.1 PCB产品阻抗设计

2.1.1 微带线(Micro-strip)和带状线(Stripline)的设计如图6所示,微带线(Micro-strip)是一种分布于电路板外层的传输线,通过介电材料与单个接地平面分离。微带线设计特点为:

1)电场穿透两种不同的介质层,较难控制阻抗;

2)空气的介电常数较PCB为低,所以整体微带线的介电常数较低;

3)受控阻抗走线的宽度较宽;

4)因为在PCB的表面,所以较易受外界干扰。

图6 微带线 

如图7所示,带状线(Stripline)是由介电材料包围的传输线,介于PCB内层两个接地平面之间。带状线设计特点为:

1)电场只在PCB范围内,较易控制阻抗;

2)介电常数较高;

3)受控阻抗走线的宽度要小于微带线中相同阻抗下走线的的宽度,这是因为有第二个接地面的存在,这些更小的走线宽度可以实现更高的布线密度;

4)因为在PCB的里面,所以不易受干扰。

图7 带状线

因此,做样品设计时,推荐使用带状线设计,阻抗易于控制且抗外界干扰能力更强。

2.1.2 单分和差分设计

对于带状线,差分匹配好就不存在远端噪声。与单分信号相比,差分信号在信号完整性方面有很多优势。比如有更好的抗噪声能力,对衰减不敏感,在高频电路设计中的应用越来越广泛,电路中关键的信号往往都要采用差分结构设计,如图8和图9所示。

图8 单分(单根走线) 

图9 差分(双根走线)

2.2 PCB产品阻抗测试
2.2.1 阻抗控制

为了使电路板走向高密度、小体积及单一零件趋势,多层板组装高速零件时,讯号线的“特性阻抗”必须控制在一定范围内,使高频信号顺利传输,以减少线路传输阻力、反射、失真、干扰等问题,此种品质要求称为“阻抗控制”(一般单分阻抗控制在50 Ω,差分阻抗控制在100 Ω)。

2.2.2 阻抗测试

阻抗测试设备有3种类型:1)阻抗测试仪;2)示波器;3)网络分析仪。

阻抗测试设备带宽频率越高,其组成的阶跃信号上升宽度越窄,阻抗测试精度越高。

3 PCB产品插入损耗设计和测试应用

3.1 PCB产品插入损耗设计

3.1.1 高频产品走线设计

低频时玻纤布对PCB的电气性能影响较小,可以认为介质是均匀的,但高频时,介质层局部特性将会对PCB的电气特性有很大影响。因为玻纤布的相对介电常数和环氧树脂存在较大差异(环氧树脂约为3,玻纤布约为6),所以板面不同位置的介电常数存在差异,从而导致板面不同位置阻抗的差异。同时,同一阻抗线,由于位置不同,介电常数也不均匀,对于差分的影响更为明显,如图10和图11所示。针对上述现象,可能的一些解决方式为:

1)走线避开玻纤束的编织间距;

2)差分走线间距正好避开玻纤束的编织间距;

3)之字形走线;

4)带一定角度(一般15°角度倾斜)的走线;

5)设计人员旋转设计;

6)PCB厂家旋转基板;

7)使用高端基板材料;

8)使用更紧密的玻纤材料(玻纤束编织间距小)。

图10 不正确的高频走线
图11 正确的高频走线
3.1.2 去嵌入设计

如图12所示,为了消除测试误差和过孔影响,设计三条不同长度的传输线,一般设计传输线线长分别为2英寸(1英寸=25.4 mm)、5英寸、10英寸。通过利用邻近的长短二组线路分别测试插损。二组数据相减除以长度差异即可知纯线路的插损值,可以比较两组插损数据对比的差异值,来判定此次测试插损的精准性。即结构A、B、C的插损值都为各自传输线插损值与过孔插损值的和。

图12 去嵌入设计

每英寸传输线插损值为:

每结构分成传输线插损值为:

若两组传输线插损值10%,则说明此次测试插损值精准性正常。
3.1 PCB产品插入损耗测试
3.1.1 插入损耗

指输出端口的输出功率与输入端口的输入功率之比。

定义为:

式中:P i 为输入到输入端口的功率;P o 为从输出端口接收到的功率。

3.2.2 信号完整性

为了满足信号完整性,测试电性能插损之前,先要测试产品阻抗匹配到50 Ω或100 Ω,这个和测试电性能Loss(损耗)仪器设计有关,测试电性能Loss仪器一般都是采购单端50 Ω,差分100 Ω的设计。产品的阻抗与仪器端口阻抗匹配时,测试端口几乎没有反射,测试插入损耗准确(如图13所示);如果产品的阻抗与仪器端口阻抗不匹配及失配的状态下,就会导致测试插入损耗时测试端口反射严重,导致测试插入损耗误差大,测试结果不准确(如图14所示)。

图13 信号完整性完好

图14 信号完整性恶化

3.2.3 插入损耗测试

常用的插入损耗测试方法有探针台法、PLTS-AFR法和Delta-L法。表1是这3种测试方法的介绍。

表1 三种插入损耗测试方法

4  结论

    本文简述了高频时代PCB产品的信号完整性电性能的测试。主要内容包括:1)PCB原材料介质层的D k 、 D f 以及导体铜箔粗糙度测试方法,可以直接评估高频原材料的电性能,可以指导工厂选择最优电性能的PCB原材料;2)PCB产品的阻抗与插入损耗设计与测试方法,介绍了如何通过阻抗设计匹配提高插入损耗测试精度,以及根据市场需求、测试频率、操作方便性、测试精度选择什么类型的插入损耗测试夹具作为测试参考。

作者:房兰霞   来源:电子工艺技术

声明:


本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有。

投稿/招聘/推广/宣传 请加微信:15989459034

射频百花潭 国内最大的射频微波公众号,专注于射频微波/高频技术分享和信息传递!
评论
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 96浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 88浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 112浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 84浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 82浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 88浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 68浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 102浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 74浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 83浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 92浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦