通过热敏电阻,如何计算IGBT结温?


欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 720975143


高可靠新能源行业顶尖自媒体


在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!

电力电子技术与新能源论坛

www.21micro-grid.com


电力电子技术与新能源小店


IGBT模块中通常都会在陶瓷基板(DBC)上设有热敏电阻(NTC或PTC,由于NTC较为常用,以下统称NTC)用于温度检测,如图1所示。在实际应用中,工程师最直接也是最常见的一个问题就是:我检测到了NTC的温度,那么IGBT真实的结温是多少?或者是:IGBT芯片和NTC之间的温差是多少?


图1:IGBT模块中的NTC


很显然,IGBT结温才是变频器/变流器/逆变器(以下统称逆变器)设计中大家关心的问题。原因很简单,IGBT有操作结温要求(比如IGBT4的Tjop不超过150°C),长时间超出这个温度IGBT会过热失效。同时,就算结温不超过要求,某些应用中也要考虑大的结温波动带来的寿命问题。如果IGBT选型或热设计中留的裕量太大,又会导致IGBT器件或散热成本增加。所以在设计时就必须要弄清楚IGBT在各种可能的运行工况下(额定、过载、堵转、整流、逆变……)的结温,以实现经济可靠的设计。


IGBT结温测量/计算的目的


1. 过温保护


过温保护是逆变器常见的也是重要的保护之一。为了避免IGBT过热损坏,设计时通常会在软件中设定NTC或散热器上靠近IGBT模块的热电偶的温度保护点。那么这个保护点温度该设多少?90°C?100°C?还是可以更高?依据是什么?这就需要知道IGBT真实的结温,从而找到合理的NTC温度保护点。

 

需要强调的是,IGBT在不同工况下,相同位置芯片的结温可能会发生较大的变化,这会导致NTC的温度也会发生较大变化。因此,采用一个温度保护点很有可能保护不了所有工况,需要在设计时充分评估。以下以一个T型三电平的例子简要说明这个问题。

 

(a)    逆变工况(PF=0.95)

(b)    整流工况(PF=-0.95)

图2:三电平IGBT温度分布


图2可以看出,当逆变器工作在逆变工况时,T1管的损耗最大(287W)、温度最高(126°C),由于NTC的位置靠T1管很近,其温度达到102°C。当逆变器工作在整流工况时,T2管的损耗最大(187W)、温度最高(146°C),由于NTC的位置离T2管很远,其温度为只有95°C。如果NTC的温度达到100°C(假设仍然在温度保护点范围内),T2管的温度已经超过150°C,就会导致过热失效,但温度保护并没有动作。


2. 性能优化


逆变器的输出电流能力和应用工况和应用环境相关。为了逆变器能可靠运行,IGBT的结温不超过最高操作结温(一般会留10 - 15°C的安全裕量),工程师在设计过程中通常会以最严酷的工作条件和环境温度设置最大电流保护点。这就会在实际运行条件没有那么严酷的情况下形成“过保护”,从而限制逆变器的最大电流输出能力。比如,电动汽车在起步过程中要求逆变器能够最大程度输出电流以提供电机大扭矩实现快速加速,然而由于最大电流保护点的限制,最大电流只能工作在保护点以下。但很多情况下,逆变器的水温都低于或远低于设计时的水温要求(通常65°C),同时随着车速的提升,逆变器的输出频率也快速增加,IGBT结温波动大幅降低,逆变器完全有能力可靠工作在保护电流点以上,以实现更优的加速性能。换句话说就是,在逆变器运行过程中,如果你能准确的计算IGBT的结温,你就能更灵活的调节最大电流工作点,从而实现逆变器的最佳输出性能。


3. 寿命预测


在一些负载动态变化快(如伺服逆变器),电机频繁加减速(如电动汽车逆变器、电梯控制器、机器人控制器),以及输出频率低(风电变流器发电机侧)的应用场景,越来越多的厂家对逆变器的运行寿命提出了要求,很多在设计时就要求计算逆变器的运行寿命。也有一些厂家已经尝试或正在考虑将寿命模型集成到软件中,从而能实时了解逆变器的寿命消耗状况。然而这并不是件容易的事,还有很多工作需要探索。明确的是这些工作的前提是你需要能实时计算IGBT的结温。

 

从以上结温测量/计算的目的可以看出,对于“过温保护”,我们需要在样机设计时对IGBT结温进行测量,从而能合理评估NTC或散热器上热电偶的温度保护点;而对于“性能优化”和“寿命计算”,我们需要对IGBT结温进行计算,从而能实时了解IGBT的结温。

 

如何测量IGBT的结温?


由于IGBT芯片在模块内部,且表面通常都覆有硅胶,标准IGBT模块直接测量结温几乎是不可能的。因此,需要IGBT生产厂家做一定的处理提供专门用于结温测试的样品。以下为应用端两种常见的测量方法:


1. 芯片表面贴热电偶


IGBT模块厂家预先在某些芯片表面贴上热电偶(如图3所示),样机测试时可以通过数据采集仪读取芯片温度。


图3:SEMiX3p IGBT芯片表面贴热电偶


需要注意的是,贴在芯片表面的热电偶金属线也能带走部分芯片的热量,会导致5- 15°C的测量误差。


另外,在测量时必须要做好热电偶和数据采集仪之间的电位隔离,否则可能会造成人员伤亡和测试仪器损坏。


2. 红外热成像仪 


IGBT模块厂家可以提供内部不带硅胶的模块,这样就可以用高分辨率的热成像仪准确测量到芯片的温度(如图4所示),但对于芯片上方有母排连接的模块不适用。

 

图4:SEMiX3p IGBT热成像仪照片


需要注意的是,为了提高测试精度,在成像之前建议在芯片表面喷涂显像剂。


如何计算IGBT的结温?

 

在IGBT中,NTC的温度可以被准确测量,因此可以通过NTC的温度来计算IGBT的结温。即,

Tj=P x Rth(j-r)+ Tr

Tj: IGBT的结温

Tr: NTC的温度

P: IGBT损耗

Rth(j-r): IGBT芯片和NTC之间的热阻

 

从这个公式可以看出,要计算IGBT的结温,就需要先知道IGBT芯片和NTC之间的热阻。有些工程师会问,IGBT规格书中都能给出IGBT结-壳热阻Rth(j-c)或结-散热器热阻Rth(j-s),为什么不能直接给出结-NTC的热阻Rth(j-r)?这样我就可以通过NTC直接计算结温了。

 

1. 为什么IGBT厂家给不出结-NTC的热阻Rth(j-r)?


这里先看一个简单的例子。

 

下图是一个7单元模块在散热器上的热仿真结果。从图上可以看出,模块的位置和方向发生变化后,尽管最热IGBT芯片的结温一样(142°C),但NTC的温度却发生了10°C的变化,这就会导致两个设计中IGBT结-NTC的热阻Rth(j-r)不一样,所以IGBT厂家单从模块方面是无法在规格书中给出结-NTC的热阻Rth(j-r),这个热阻必须要结合实际设计才能给出。


图5:模块安装位置对NTC温度的影响

 

当然,IGBT的结-NTC的热阻Rth(j-r)除了和位置有关,还和以下很多因素有关:


  • 冷却方式(风冷还是液冷)

  • 散热器材质

  • 导热硅脂的导热率和厚度

  • 模块之间的距离

  • IGBT模块的工况(可以参考图2)

 

因此,IGBT的结-NTC的热阻Rth(j-r)必须要在给定的散热设计下才能测试得到。那么如何测试这个热阻Rth(j-r)?或者更准确的说,如何测试热阻抗Zth(j-r)?


2.  如何测试热阻抗Zth(j-r)?


前面提到可以采用“芯片表面贴热电偶”或“红外热成像仪”的方法测量结温,再结合NTC的温度和IGBT的损耗,理论上是可以计算出热阻Rth(j-r)。但由于热电偶响应时间和热成像仪的刷新率都相对较慢,无法测试动态热阻抗Zth(j-r),所以IGBT厂家一般采用Vce结温测量法来测量IGBT的热阻和热阻抗曲线。

 

Vce结温测量法如图6所示。IGBT在小电流(10 - 100mA)条件下,集-射极压降Vce和结温Tj成线性比例关系,这个关系可以通过不同温度下测量Vce值的方法校正出来。这样在IGBT热阻测试时就可以通过小电流下Vce的测量值推算出实际的结温。这种结温测量方法的好处是测量准确,同时也能测量动态结温变化。

 

图6:Vce结温测量法


需要注意的是,考虑到芯片之间的热耦合,建议测试时器件的发热情况尽量接近真实运行工况,比如常见的三相半桥拓扑(6单元),可以将6个IGBT开关串联在一起通直流电流加热。或者更精确的方式是在串联的6个IGBT开关和6个二极管上通交流电流,电流正半周流过IGBT,负半周流过二极管,这样的话就能把所有器件之间的热耦合考虑进来。


稳态结温计算


当逆变器处于稳态运行,或者准稳态运行(负载变化较慢)时,我们可以采用IGBT单个开关的平均损耗和结-NTC的热阻Rth(j-r)来计算IGBT的结温(见图7)。这里假设IGBT模块中每个IGBT开关的损耗和结温都是一致的,所以采用一个相同的热阻Rth(j-r)就可以了。

 

图7:稳态结温计算



需要注意的是,计算损耗的参数(如Vce0, Rce, Eon, Eoff)和结温都是正相关的,所以在计算时需要做多次迭代处理直到结温接近稳定。

 

另外一个问题是这种稳态计算方法得到的结温是平均结温,不能反映结温的波动,在输出基波频率10Hz以下时,结温波动会很明显。要计算IGBT的最高结温,一个简单的方法是采用基波频率结温校正系数对平均结温进行校正,如图8所示,这个结温校正系数和器件的热阻抗相关。

 

图8:基波频率结温校正系数


动态结温计算


对于冲击型负载(负载短时大幅变化),如伺服控制器要求3倍过载1-3秒,电动汽车控制器要求堵转1-5秒,稳态结温计算方法就不再适用。一方面,在几秒时间内IGBT的结温处于动态增加的过程,这就需要采用结-NTC的暂态热抗Zth(j-r)来计算;另一方面,每个IGBT开关的损耗和结温可能会不一致,比如在电动汽车堵转时,6个IGBT开关只有一个IGBT承受较大的电流,而其它5个IGBT的电流相对较小或为零,这就会导致每个IGBT开关和NTC之间的热阻抗都不一样。因此,在做热阻抗测量时要分别对每个IGBT开关测量。


1.  IGBT结到NTC的暂态热阻抗Zth(j-r)   


图9是模块在液冷散热条件下IGBT结温和NTC之间的热阻抗曲线(绿色),在计算时可采用Foster热阻抗模型(多阶RC串联)。

 

      图9:IGBT结到NTC的暂态热阻抗Zth(j-r)


到这里大家可以看到,动态结温采用热阻抗Zth(j-r)的计算工作量要比稳态采用热阻Rth(j-r)大很多。实际上,为了能精确计算动态结温,还要考虑热耦合的影响。由于每个开关的损耗和结温并不一致,我们在测量热阻抗Zth(j-r)只能针对每个开关测量,而这又忽略了其他开关对被测开关和NTC热的影响。

 

图10描述了一个半桥模块内部各开关之间的热耦合。这里以上桥IGBT(TOP IGBT)为例,它除了自身发热对NTC的温度产生影响,对应结到NTC的热阻为Rth(j-r)_self,其它发热开关:下桥IGBT(BOT IGBT)、上桥二极管(TOP Diode)、下桥二极管(BOT Diode),都会对上桥IGBT和NTC之间的温差产生影响,对应的热阻为Rth(j-r)_switch2、Rth(j-r)_switch3、Rth(j-r)_switch4。需要注意的是,这些热阻表征的是其它开关对上桥IGBT和NTC之间温度的影响程度,其值甚至也可以是负值。


图10:半桥模块内部各开关之间的热耦合

 

因此,对一个半桥IGBT模块,有4个开关器件(上、下桥IGBT和二极管),每个开关和NTC之间的温度关系需要用4个热阻来表示,这样就形成了一个热阻矩阵来充分表征一个模块中开关器件和NTC之间的温度关系,如表1所示。对于动态结温,这些热阻同样需要采用热阻抗来计算。


表1:半桥模块的热阻矩阵



2.  动态损耗计算


同样,要计算动态结温,平均损耗计算方法也不再适用,需要在每个调制周期内实时计算IGBT的导通损耗和开关损耗,计算公式如下:



3.  动态结温计算


有了各个开关器件的动态损耗,在结合测量的动态热阻抗曲线,就可以以载波频率对应的步长实时计算IGBT的动态结温,计算公式如下:


文章首尾冠名广告正式招商,功率器件:IGBT,MOS,SiC,GaN,磁性器件,电源芯片,DSP,MCU,新能源厂家都可合作,有意者加微信号1768359031详谈。

说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

电力电子技术与新能源通讯录:

Please clik the advertisement and exit

重点

如何下载《电力电子技术与新能源板块内高清PDF电子书


点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!


或者转发所要文章到朋友圈不分组不屏蔽,然后截图发给小编(微信1413043922),小编审核后将文章发你!


推荐阅读:点击标题阅读

LLC_Calculator__Vector_Method_as_an_Application_of_the_Design

自己总结的电源板Layout的一些注意点

High_Frequency_Transformers_for_HighPower_Converters_Materials

华为电磁兼容性结构设计规范V2.0

Communication-less Coordinative Control of Paralleled Inverters

Soft Switching for SiC MOSFET Three-phase Power Conversion

Designing Compensators for Control of Switching Power Supplies

100KHZ 10KW Interleaved Boost Converter with full SiC MOSFET

华为-单板热设计培训教材


看完有收获?请分享给更多人


公告:

电力电子技术与新能源微信群,欢迎加小编微信号:(QQ号)1413043922,请注明研究方向或从事行业(比如光伏逆变器硬件),小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。

在这里有电力电子技术:光伏并网逆变器(PV建模,MPPT,并网控制,LCL滤波,孤岛效应),光伏离网,光伏储能,风电变流器(双馈、直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC(LLC,移相全桥,DAB),储能(锂电池、超级电容),低电压穿越(LVRT),高电压穿越,虚拟同步发电机,多智能体,电解水,燃料电池,能量管理系统(直流微网、交流微网)以及APF,SVG ,DVR,UPQC等谐波治理和无功补偿装置等。
PSCAD/MATLABsimulink/Saber/PSPICE/PSIM——软件仿真+DSP+(TI)TMS320F2812,F28335,F28377,(Microchip)dsPIC30F3011,FPGA,ARM,STM32F334——硬件实物。
欢迎技术人员加入,多多交流,共同进步!


更多精彩点下方阅读原文

      点亮在看,小编工资涨1毛!

电力电子技术与新能源 电力电子技术,交直流微电网,光伏并网逆变器,储能逆变器,风电变流器(双馈,直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC,锂电池,超级电容,燃料电池,能量管理系统以及APF,SVG ,UPQC等
评论
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 159浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 74浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 64浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 118浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 60浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 61浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦