一种数组环形队列的数据结构

李肖遥 2023-04-23 08:03
    关注、星标公众号,直达精彩内容

原文:https://blog.csdn.net/yannanxiu/article/details/52199178


概述

一种更好的计算队尾指针的方法。

队尾指针新算法

一个新的计算队尾指针的公式:

设模拟环形队列的线性表长度是N,队头指针为head,队尾指针为tail,则每增加一条记录,就可以用一下方法计算新的队尾指针:
tail = (tail + 1) % N

环形队列示意图

思考

但是,我在移植到8266的代码时,发现有点问题。

第一,head和tail应该是存储该数组的下标而不是一个指向该数组元素的指针。如果tail是指针,那么 tail本质上是一个内存地址,*tail是指向该数组的某一元素。那么这算式tail = (tail + 1) % N其实是对某数组元素的内存地址+1,然后在用N求余。
所以head和tail应该是保存该数组的下标,而不是指向该数组元素的指针。

第二,由于原先的代码,其队尾指针总是指向最后一个入队元素的下一个元素,而《算》给出的队列,队尾指针总是指向最后一个入队的元素。如上图,一个N=12的环形队列,原先的代码tail是指向第8个,《算》是指向第7个,由于我是在8266的示例代码上修改的,所以《算》给出的队尾指针算法需要调整一下:

//元素入队之后
tail++;         //tail指向最后一个入队的下一个元素
tail=tail % N;  //重新计算tail的数值123

新的数据结构

那么我就开始定义新的数据结构了,原先的数据结构是这样的

typedef struct{
    uint8_t* p_o;               //指向原点的指针,用来数组首地址
    uint8_tvolatile p_r;      //读取指针,相当于head
    uint8_tvolatile p_w;      //写入指针,相到于tail
    volatile int32_t fill_cnt;  //队列计数
    int32_t size;               //缓冲区的大小
}RINGBUF;

新的数据结构:

typedef struct {
    char  *buf;             //指向队列数组的指针
    unsigned int length;    //数组长度
    unsigned int head;      //队头,存储数组下标
    unsigned int tail;      //队尾,存储数组下标
    int fill_cnt;           //队列计数
}RINGBUF;

判断是否空队列

一开始,本来想用if(head==tail)来判断队列是否为空的,但是由于tail保存的是入队元素的下一个数组下标,当队列填满的时候,tail的下标正好等于head,所以不能通过if(head==tail)来判断队列是否为空,

完整代码

下面是完整的数组环形队列代码,运行环境是VS2015,主函数里进行了简单的测试:

// RingBuf.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"

typedef struct {
    char  *buf;             //指向队列数组的指针
    unsigned int length;    //长度
    unsigned int head;      //队头
    unsigned int tail;      //队尾
    int fill_cnt;           //队列计数
}RINGBUF;

int RINGBUF_Init(RINGBUF* r, char array[], size_t len)
{
    if (len <2 || array==NULL){
        return false;
    }

    r->buf = array;
    r->length = len;
    r->fill_cnt = 0;
    r->head = r->tail = 0;
    return true;
}

int RINGBUF_Put(RINGBUF* r, char data)
{
    //当tail+1等于head时,说明队列已满
    if (r->fill_cnt >= r->length) {
        printf("BUF FULL!\n");
        return false;                  // 如果缓冲区满了,则返回错误
    }

    r->buf[r->tail] = data;
    r->tail++;
    r->fill_cnt++;
    //计算tail是否超出数组范围,如果超出则自动切换到0
    r->tail = r->tail % r->length;
    return true;
}

int RINGBUF_Get(RINGBUF* r, char *c, unsigned int length)
{
    //当tail等于head时,说明队列空
    if (r->fill_cnt<=0) {
        printf("BUF EMPTY!\n");
        return false;
    }

    //最多只能读取r->length长度数据
    if (length > r->length) {
        length = r->length;
    }

    int i;
    for (i = 0; i    {
        r->fill_cnt--;
        *c = r->buf[r->head++];                 // 返回数据给*c
        *c++;
        //计算head自加后的下标是否超出数组范围,如果超出则自动切换到0
        r->head = r->head % r->length;
    }
    return true;
}



#define BUF_LEN 5
RINGBUF BUFF;
char buf[BUF_LEN];

int main()
{
    RINGBUF_Init(&BUFF, buf, sizeof(buf));

    printf("1、逐个读取数据测试\r\n");
    int length = 5;
    for (int i = 0; i < length; i++) {
        RINGBUF_Put(&BUFF, i);
    }

    char data;

    length = 5;
    for (int i = 0; i < length; i++) {
        RINGBUF_Get(&BUFF, &data, 1); //从BUFF读取1个字节
        printf("每次读取1个字节:buf pop : %d \r\n", data);  //打印该字节
    }

    printf("\n2、一次性读取测试\r\n");
    length = 5;
    for (int i = 0; i < length; i++) {
        RINGBUF_Put(&BUFF, '1' + i);
    }
    char data2[11] = { 0 };
    RINGBUF_Get(&BUFF, data2, 5);
    printf("一次性读取5个字节:buf pop : %s \r\n", data2);  //打印该字节

    printf("\n3、放入超过缓冲区长度(BUF_LEN+1)数据测试:\r\n");
    length = BUF_LEN + 1;
    for (int i = 0; i < length; i++){
        RINGBUF_Put(&BUFF, '1'+i);
    }

    char data3[BUF_LEN+1] = { 0 };
    RINGBUF_Get(&BUFF, data3, BUF_LEN + 1);
    printf("一次性读取(BUF_LEN+1)个字节测试:buf pop : %s \r\n", data3);  //打印该字节

    //4、测试读取空缓冲区
    printf("\n4、读取空缓冲区测试:\r\n");
    RINGBUF_Get(&BUFF, data3, 2); //从BUFF读取2个字节

    return 0;
}

控制台打印信息如下:

1、逐个读取数据测试
每次读取1个字节:buf pop : 0
每次读取1个字节:buf pop : 1
每次读取1个字节:buf pop : 2
每次读取1个字节:buf pop : 3
每次读取1个字节:buf pop : 4

2、一次性读取测试
一次性读取5个字节:buf pop : 12345

3、放入超过缓冲区长度(BUF_LEN+1)数据测试:
BUF FULL!
一次性读取(BUF_LEN+1)个字节测试:buf pop : 12345

4、读取空缓冲区测试:
BUF EMPTY!
请按任意键继续…

后话

由于存在几种队尾指向元素的方式,以上代码是还可以在修改优化一下的。
《算》的代码是不需要考虑队列是否满了,他只需要直接覆盖旧的元素即可,我的需求是需要判断队列是否填满,以免旧的元素被覆盖。


版权声明:本文来源网络,免费传达知识,版权归原作者所有。如涉及作品版权问题,请联系我进行删除。

‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧  END  ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

关注我的微信公众号,回复“加群”按规则加入技术交流群。


点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看。

李肖遥 公众号“技术让梦想更伟大”,作者:李肖遥,专注嵌入式,只推荐适合你的博文,干货,技术心得,与君共勉。
评论
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 118浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 随着航空航天技术的迅猛发展,航空电子网络面临着诸多挑战,如多网络并行传输、高带宽需求以及保障数据传输的确定性等。为应对这些挑战,航空电子网络急需一个通用的网络架构,满足布线简单、供应商多、组网成本相对较低等要求。而以太网技术,特别是TSN(时间敏感网络)的出现,为航空电子网络带来了新的解决方案。本文将重点介绍TSN流识别技术在航空电子网络中的应用,以及如何通过适应航空电子网络的TSN流识别技术实现高效的航空电子网络传输。一、航空电子网络面临的挑战航空航天业专用协议包括AFDX、ARINC等,这些
    虹科工业智能互联 2024-11-29 14:18 100浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 58浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 60浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 159浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦