卡尔曼滤波,超详细解读!

面包板社区 2023-04-21 20:30

卡尔曼滤波本质上是一个数据融合算法,将具有同样测量目的、来自不同传感器、(可能) 具有不同单位 (unit) 的数据融合在一起,得到一个更精确的目的测量值。

卡尔曼滤波的局限性在于其只能拟合线性高斯系统。但其最大的优点在于计算量小,能够利用前一时刻的状态(和可能的测量值)来得到当前时刻下的状态的最优估计。本文虽然是小白教程,但还是需要各位至少知道高斯分布,一点点线性代数,还有状态向量这样的名词。


简述


考虑一个SLAM 问题,它由一个运动方程:xt=f(xt−1,ut)+ωt

和一个观测方程组成:zt,j=h(yj,xt)+vt,j


就把它当作一个线性系统吧(非线性系统请看下一讲扩展卡尔曼滤波),并且为了简化推导,忽略路标的下标j,并把路标y 并入到状态向量一起优化,那么运动方程就可以写为:xt=Ftxt−1+Btut+ωt


其中,xt 为t 时刻的状态向量,包括了相机位姿、路标坐标等信息,也可能有速度、朝向等信息;

  • ut 为运动测量值,如加速度,转向等等;

  • Ft 为状态转换方程,将t-1 时刻的状态转换至t 时刻的状态;

  • Bt 是控制输入矩阵,将运动测量值 ut 的作用映射到状态向量上;

  • ωt 是预测的高斯噪声,其均值为0,协方差矩阵为 Qt 。


这一步在卡尔曼滤波中也称为预测 (predict)。

类似地,测量方程可以写为:zt=Htxt+vt,其中:


  • zt 为传感器的测量值;

  • Ht 为转换矩阵,它将状态向量映射到测量值所在的空间中;

  • vt 为测量的高斯噪声,其均值为0,协方差矩阵为 Rt 


而卡尔曼滤波就是预测 - 测量之间不断循环迭代。


当然,对于某些情况,如GPS + IMU,由于IMU 测量频率远比GPS 高,在只有IMU 测量值时,只执行运动更新,在有GPS 测量值时再进行测量更新。


一个小例子


用一个在解释卡尔曼滤波时最常用的一维例子:小车追踪。如下图所示:


可以看到,经过预测更新,协方差矩阵P 变大了。这是因为状态转换并不完美,而且运动测量值含有噪声,具有较大的不确定性。

预测更新实际上相当于“加法”:将当前状态转换到下一时刻(并增加一定不确定性),再把外界的干扰(运动测量值)叠加上去(又增加了一点不确定性)。

上面即为卡尔曼滤波中预测这一步。这一步相对比较直观,推导也较测量更新简单,就只在这里详细给出了。

如果得到了测量值,那么我们就可以对状态向量进行测量更新了,对应的公式为

x^t=x^t|t−1+Kt(zt−Htx^t|t−1)Pt=Pt|t−1−KtHtPt|t−1


其中,Kt=Pt|t−1HtT(HtPt|t−1HtT+Rt)−1为卡尔曼增益。


从这里就可以看到,测量更新显然比预测更新复杂,难点也集中在这里。下面就给出测量更性的详细推导


推导



一维case

从t-1 时刻起,小车运动后,经过前面所述的预测更新后,我们就得到了t 时刻的小车位置的估计。


由于在卡尔曼滤波中,我们使用高斯概率分布来表示小车的位置,因此这个预测的位置可以写为:

为了与前面的通用的推导区别开来,在这个一维的例子中我们使用了新的符号。


不过熟悉高斯概率分布的话应该可以马上看出来, μ1  为这个高斯分布的均值, σ1 为方差,而r 为小车的可能位置, y1  为某个可能位置 (r) 的概率分布。


假设在t 时刻,我们通过某测距仪测得小车距离原点的距离r。


由于测量包含噪声(且在面前我们假设了其为高斯噪声),因此该测量值也可以利用高斯概率分布来表示:

除了下标外,其余的字母的含义都和上面的式子一样。

如上图琐事,现在在t 时刻,我们有了两个关于小车位置的估计。


而我们所能得到的关于小测位置的最佳估计就是将预测更新和测量更新所得的数据融合起来,得到一个新的估计。


而这个融合,就是一个简单的“乘法”,并利用了一个性质:两个高斯分布的乘积仍然是高斯分布。

最右边的式子是为了后面的计算而准备的。


本质上,这(高斯分布相乘)就是卡尔曼滤波中测量更新的全部了。


那么, 怎么由上面两个简单的一维的式子得到前一节 x^t 和 Pt 呢?一步一步来。


转换矩阵H 的引入


在刚刚的一维情况的小例子中,我们其实做了一个隐式的假设,即有预测更新得到的位置的概率分布和测距仪所得的测量值具有相同的单位 (unit),如米 (m)。


但实际情况往往不是这样的,比如,测距仪给出的可能不是距离,而是信号的飞行时间(由仪器至小车的光的传播时间),单位为秒 (s)。


这样的话,我们就无法直接如上面一般直接将两个高斯分布相乘了。


此时,就该转换矩阵 Ht  闪亮登场了。由于 r=c⋅t ,c 为光速。所以此时 Ht=1c  (测量方程为 t=rc ,可以回去参考一下式(4))。



推广至高维


到了这一步,这个一维情况下卡尔曼滤波的测量更新步骤就已经彻底讲完了。


剩下的就是将这个一维例子推广至高维空间中。其实大家仔细观察一下就会得到答案。


小结一下


通过这个一维情况的推导,希望能说明卡尔曼滤波就是在给定初始值的情况下,由预测和测量不断迭代、更新状态向量。

而预测就是一个“加法”:状态转换和运动预测叠加;测量则是简单的高斯分布相乘,中间引入了一个转换矩阵将测量值和状态向量映射在同一个代数空间中。


讨论


至此,相信你已经明白了卡尔曼滤波的推导过程。而具体的问题就取决于你的建模了。如在上面的小车的例子中,各个参数如下:


多问个为什么


如果只关心卡尔曼滤波的推导和结果,到这里就可以停止啦。但推完卡尔曼滤波,我还有几个个为什么。知其然更要知其所以然。

下面是我对于自己的疑惑学习、思考得到的解答,而且碍于表达能力,不敢说百分百正确。


首先是对于预测更新。前面也说到了,预测更新相当于“加法”。


这相对好理解一些。在t-1 时刻我们有了对于小车位置的一个估计,根据对小车速度(状态向量之一)、小车的加速度(运动测量值)的建模。


在辅以时间间隔,自然可以计算出小车在该时间间隔内的位移和速度增量,再将之叠加到原有的状态向量上即可。


由于建模和测量的过程带有噪声,所以此时小车的位置估计的精度是下降的(方差增大)。


那么为什么测量更新就是乘法而非加法呢?

因为测量更新的依据是贝叶斯法则。


在有了测量值之后,我们求小车位置的概率分布其实就是在求 P(x|z) 。根据贝叶斯法则有:P(x|z)=P(z|x)P(x)P(z)


 P(x|z) 是后验概率。直接求后验概率比较困难(为什么?)。假设就在这个一维的小车例子中,


当我们得到一个距离测量值z,那么小车的位置可能是距离原点的-z 或z 的两个点上。


对于二维就可能是一个圆,三维则是一个球。


此时要精确地知道小车的位置(消除歧义点),一则我们可以继续测量,二则需要额外的信息。这就使得求后验概率比较费时费力。

反观贝叶斯法则的右侧,此时我们已经有了先验概率 P(x) ,这是上一时刻的状态向量的概率分布,并且我们也有了 P(z|x) ,

因为所得的测量值 zt=Htxt+vt  表达的就是在当前位置下,我们能得到的测量值,亦即贝叶斯中的似然。


在 P(z)  为一个常数的情况下,最大化 P(z|x)P(x)  就得到了最优的 P(x|z) 。


既然测量更新是以贝叶斯公式为基础,那么反观预测更新,除了前面那个直观的“加法”解释之外,是不是也有一个概率上的解释呢?


连续的高斯分布所表示的小车位置的预测更新我没找到(不好意思),但就离散情况的话还是有的,就是全概率公式。


以下图为例,假设t-1 时刻,小车的位置分布概率如图所示,到了t 时刻,预测小车向前运动了3米(3个格子),但由于模型的不确定性和噪音。


我们不能保证小车精确地向前走了3米,根据概率分布,我们可以假设小车有80%的概率往前走了3米,10%的概率往前走了两米,而另有10%的概率往前走了4米。



那么,在t 时刻,若小车真的运动到了这个位置,其概率分布是怎样的呢?


它既有可能是在距离该位置3米远的地方以0.8的概率运动到现在这个位置的,也有可能是以0.1 的概率从2或4米远的地方为初始位置运动到这的,根据全概率公式,可以表达为:



P(z)=0.8⋅0.6+0.1⋅0.2+0.1⋅0.2=0.52


类似地,t时刻下,小车运动后在其他位置上的概率分布也可以用全概率公式表达出来。


当然,最后的计算结果还需要进行归一化处理。


如果我们不断地减小每个方格的分辨率,并按照高斯分布给予每个方格一个概率值,并对小车运动也做如此的离散化处理,应该也是可以不断逼近连续的情况(个人猜想)。

至此,关于卡尔曼滤波的个人浅见就到此为止了。精通还需要不断地实践,但希望读完本文,能让你对卡尔曼滤波有全面的了解。


本文转自知乎:https://zhuanlan.zhihu.com/p/36745755



END


↓↓ 点击阅读原文,参加活动

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦