麻省理工EES:影响库伦效率的新因素—锂离子交换速率

锂电联盟会长 2023-04-21 09:35
点击左上角“锂电联盟会长”,即可关注!

01


导读


尽管锂金属负极有望满足锂离子电池对能量密度的需求,但它还没有实现长循环寿命。良好的SEI在调节电解质和电极之间的Li+交换方面起着关键作用,但这种影响的量化一直不清楚,迄今为止Li+交换和库伦效率(CE之间的关系还没有明确阐明。

02


成果简介


近期,相关工作以“Beneficial vs. Inhibiting Passivation by the Native Lithium Solid Electrolyte Interphase Revealed by Electrochemical Li+ Exchange”为题发表在Energy & Environmental Science上。该工作利用电化学阻抗谱和伏安法,探究了天然SEIs在一系列电解质(CE范围为78.0%至>99%)的自洽Li+交换值。结果发现CESEILi+交换率呈正相关。此外,在高CE电解质中,SEI Li+的交换速率在循环过程中增加,在某些情况下增加了一个数量级,超过10 mA/cm2,而对于低CE电解质,它们仍然保持在低水平(<1 mA/cm2)。

03


关键创新


Li+交换速率与Li电镀/剥离CE成正相关。

04


核心内容解读


1. 不存在(左)和存在(右)SEI 情况下,Li0/Li+氧化还原从本体电解质到Li金属电极的过程@RSC

本研究采用慢扫速(1 mV/s)循环伏安法(CV)和电化学阻抗谱(EIS)系统地量化了Li负极上的Li+交换(图1),并在“赝”交换电流jp0的框架下解释了测量的交换速率,它代表了电极上Li+交换总速率。事实上,赝交换电流jp0揭示了Li+交换的瞬态演化。结果发现jp0在不同电解质之间有很大差异,且与CE具有明确的正相关关系。

2.a)不同电解质的CE。(b)在1M LiPF6 EC/DMC中Li/Li电池在0.5mA/cm2@1mAh/cm2下的恒流电镀/剥离曲线。(c)在三种电解质(1.5 M LiAsF6 2-Me-THF、1 M LiPF6 EC/DMC和1 M LiTFSI DOL/DME+3wt%LiNO3)中循环前后的奈奎斯特图。(d)通过拟合(c)中的EIS光谱获得SEI电阻和交换电流密度,@RSC


用阻抗谱法测量Li+交换

本工作选择了具有代表性的电解质进行分析(图2a),包括1.5 M LiAsF6 in 2-Me-THF(CE=78.0%),1 M LiClO4 in PC(81.9%),1 M LiPF6 in EC/DEC(93.8%),1 M LiFSI in FEC(95.3%)或1 M LiPF6 in EC/DMC(96.9%),2 M和7 M LiFSI in FEC(CE分别为97.5%和98.2%),以及1 M LiTFSI in DOL/DME和2 M LiFSI/1 M LiTFSI in DOL/DME,每种电解质都含有3wt%的LiNO3(CE分别为99.0%和99.3%)。首先在对称Li/Li电池中使用EIS分析来测量Li+交换电流。图2b显示,电池组装后,在OCV下静置5小时,并进行初始阻抗谱测量。接下来,进行电镀/剥离循环,随后重复该过程。图2c显示了三种代表性电解质在五次这样循环中的EIS数据。5次循环后,不同电解质的RSEI幅度变化显著(图2d),1.5 M LiAsF6 in 2Me-THF最高(第5次循环时为512.6 Ω cm2),其次是1 M LiPF6 in EC/DMC(47.6 Ω cm2)和1 M LiTFSI DOL/DME+3%LiNO3(18.3 Ω cm2)。这三种电解质的值分别显示出0.03、0.30和0.79 mA/cm2的增加趋势。

3.a)不同电解质中恒流循环数(0.5mA/cm²@1mAh/cm²)的变化。(b)每个循环的平均变化。(c)在每种电解质中5次循环后Li貌。@RSC

图3a显示了每种电解质在50次循环中的高频在1型电解质中,在50次循环中保持稳定,如1.5 M LiAsF6 2-Me-THF、1 M LiClO4 PC、1 M LiPF6 EC/DEC、1 M Li FSI FEC和1 M LiPF6 EC-DMC。然而,在2型电解质(如2M LiFSI FEC、7M LiFSI-FEC、1M LiTFSI DOL/DME+3wt%LiNO3、2M LiFSI 1M LiTFI DOL/DME+3wt%LiNO3)中,随循环显著增加。这些的变化如图3b所示。1型电解质的CE较低,其具有多孔和高纵横比的Li沉积形态(图3c),而2型电解质均呈现致密的Li沉积形貌。

4.a)不同电解质中循环次数的变化1型和2型电解质中(b)锂沉积机制和(c)5次和25次循环后获得的电镀Li形。(d)11M LiClO4 PC)和(e)2电解质(2M LiFSI/1M LiTFSI DOL/DME+3wt%LiNO3)中EIS光谱的演变。(f)1型和2型电解质的Li+交换率随循环的变化@RSC

对于DOL/DME基电解质,在约10圈进一步增加,最终稳定在约60圈(图4a)。然而,与低CE电解质(1M LiClO4 PC)相比,该稳定值高得多。这可能是因为在低CE电解质中,残留的SEI具有低的Li+交换值,因此在随后的循环中对新沉积Li的优先成核几乎没有优势(图4b)。由于SEI没有被有效地重新利用,因此随后的Li电镀需要在每个循环上重新建立SEI,从而导致较低的CE。而在高CE电解质中,来自先前循环的SEI残留物对于Li电镀可以保持活性。图4c显示,即使在长循环后,2型电解质的Li形貌仍然保持致密,而1型电解质出现高度多孔的Li。在循环过程中,1型电解质的EIS光谱基本保持不变,并以单个半圆的形式持续存在(例如,1M LiClO4 PC,图4d)。而2型电解质显示出更动态的阻抗响应(图4e)。在初始循环阶段,出现高频半圆,带有一个小的低频尾巴。在随后的循环中,这个半圆的幅度显著降低。此外,最初的低频尾巴发展成了一个更大的半圆。当考虑尾巴演变时,低于未考虑该特征的情况(图4f),表明低频特征在发展过程中可能通过额外的机制阻碍Li+交换,部分抵消了高频下SEI阻抗的下降。

5.a)电极条件(在Cu或电镀Li上)的变化。(b)不同基底上的代表性CV扫描,其中 在每次反向扫描时获得。(c)CV循环数的变化@RSC


循环伏安法测定Li+交换

图5a显示,在-0.2V和1V之间以1mV/s的速度在Cu/Li扣式电池中进行11次连续的CV循环,在每次扫描结束时发生Cu的完全剥离。单个CV扫描为赝Li+交换电流提供了一个数据点,称之为在1M LiPF6 EC/DEC电解质中,原始Cu上的电流-电压曲线(图5b)显示出金属沉积到惰性基底上的行为。负扫时,首先在Cu上镀Li,需要约100 mV的过电位。在反向扫描中,Li继续被镀在Cu上,直到电压超过平衡电位(E0),之后Li从Cu中剥离。在这些条件下,由于在正扫期间预先镀有Li,Cu/Li电池表现为对称电池,因此显示出对称的电势-电流关系。在反扫的低电镀/剥离过电位窗口(<20mV)下,阳极和阴极电流较小(<0.2mA/cm2),并且电流对过电位表现出线性响应。通过该方法确定的原始、镀Li和完全剥离的Cu集流体的Li+交换如图5c所示。在1M LiPF6 EC/DEC中,原始Cu电极的很低(0.02mA/cm2),但在Li被镀在电极上之后显著增加并稳定到平均0.26mA/cm2。在Li被剥光之后,与原始Cu电极相比,保持更类似于镀Li电极的电流。总之,这些结果证实了Li电镀行为强烈依赖于表面处理及其历史。

6.a)通过在1 mAh/cm2的电镀Li上以1 mV/s的CV测量选定电解质的Tafel图。(b)所有电解质中沉积锂上CV扫描数的变化。(c)通过CV和EIS测量的Li+交换之间的等效性。(d)所有电解质的平均e)本研究中的电解质CE-的关系。(f)(e)在较高CE范围内的放大@RSC

在平衡电压附近更陡的j-Ew,corrected关系表明更高。对于所有电解质,j-Ew,corrected关系显示了在高过电位下的典型Tafel行为,即线性Ew,corrected-logj行为。所有电解质的随CV扫描数的变化如图6b所示。第一次扫描的值范围从非常低(1.5M LiAsF6 2-Me-THF的0.01mA/cm2)到2M LiFSI FEC的1.21mA/cm2。在低CE电解质中,随CV扫描数保持大致恒定。相比之下,较高CE的电解质每次CV扫描后,持续小幅增加。在2型电解质中,基于DOL/DME的体系显示出最高的形成对比, 其中2M和7M LiFSI FEC电解质显示出最高的为了更系统地评估,在Li/Li电池中进行了额外的实验以测量在这些条件下,这些值显示出良好的定量对应关系(图6c-d)。值得注意的是,回到图6a-b中的电镀Li测量(即,单个恒流电镀步骤后的CV),在所有扫描结束时观察到CE和之间的正相关关系(图6e-f)。这表明,快速的Li+交换是区分高CE电解质和低CE电解质的关键特性。

7.a)原始Cu上CV扫描数的变化。(b)循环Cu上CV扫描数的变化。(c)在1mAh/cm2恒流化成循环之前Cu上第11次CV扫描测量。(d)在1mAh/cm2恒流化成循环之后,Cu上第11次CV扫描测量。(e)循环Cu上Li的CE随平均的变化@RSC


SEI形成后关系的出现

图7a显示所有电解质原始Cu上前11次CV扫描。在1 mAh/cm2的恒流循环之后(图7b),在某些电解质中观察到Li+交换明显提高。在1mAh/cm2电镀步骤之前,在Cu上没有发现相关性(图7c),这与电镀后的Cu形成了对比,在电镀后观察到强烈的单调相关性。这表明,与Li的趋势类似,更高的CE电解质在修饰Cu/电解质界面方面也更有效。重要的是,即使在底层Li完全剥离后,这种效应仍然存在,表明SEI-Li+交换导致了这种趋势。相反,低CE电解质在预沉积Cu和剥离Cu之间显示出最小的Li+交换差异,表明即使在1 mAh/cm2循环之后,在Cu上形成SEI在这些电解质中也是无效的。图7e中充分总结了剥离后Cu定量单调关系。即使在经历重复的1 mAh/cm2电镀/剥离循环时,1型电解质也显示出预期的稳定行为。

8.在(a)1M LiPF6 EC/DEC和(b)2M LiFSI 1M LiTFSI DOL/DME+3wt%LiNO3中完整1 mAh/cm2恒流循环之前和之后通过Cu上的CV获得每个循环的CE和 @RSC

图8a和图8b分别显示了1M LiPF6 EC/DEC(1型电解质)2M LiFSI 1M LiTFSI DOL/DME+3wt%LiNO3(2型电解质)中的关系。对于1型电解质,1-10次循环中CE随着增加而单调增加。在1mAh/cm2恒流循环之后,表现出阶跃变化增加到更高的值,伴随着CE的改善。在2型电解质中观察到类似的行为,并没有观察到更高的CE和这些结果表明,CE也与每个循环的Li+交换密切相关。

9.1型电解质和2型电解质中CE随倍率的变化@RSC


Li倍率性能的影响

1型碳酸盐电解质(1M LiPF6 EC/DEC和1M LiClO4 PC)中的CE随着j的增加而不太稳定,与j<0.5 mA/cm2时的CE值相比,在高j时表现出普遍下降。这种行为在1M LiClO4 PC中最为明显,其中CE在0.2mA/cm2和2mA/cm2之间从87.1%降低到76.9%。另一方面,2型电解质(2M LiFSI FEC和DOL/DME基电解质)CE值随循环电流j变化。在1M LiClO4 PC和1M LiPF6 EC/DEC中,分别不超过0.25mA/cm2和0.55mA/cm2;当施加的电流密度超过这些值时,这些电解质CE显著降低2型电解质SEI在这些系统中可以容忍极端Li+交换速率,其可以容易地超过5mA/cm2

05


成果启示


本工作使用EIS和CV两种技术,在低CE和高CE电解质中,对天然SEI总Li+交换速率进行了量化。低CE电解质通常表现出稳定和适度的Li+交换速率(<1 mA/cm2)。高CE电解质表现出更高的总Li+交换率,在循环过程中进一步增加。这表明CE和Li+交换之间存在正相关性。研究结果还表明,与循环后的铜相比,未循环铜的Li+交换更缓慢,原始铜的CE更低。这些发现有望指导未来的电解质设计,以最大限度地优化SEI相,促进Li+交换过程

06


参考文献


Gustavo Hobold, Kyeong-Ho Kim and Betar M Gallant*. Beneficial vs. Inhibiting Passivation by the Native Lithium Solid Electrolyte Interphase Revealed by Electrochemical Li+ Exchange, Energy & Environmental Science, 2023.

https://doi.org/10.1039/D2EE04203G







来源:新威 NEWARE
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com。

相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法!
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 122浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 62浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 62浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 175浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 171浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 60浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 166浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 69浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 63浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 67浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 39浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 94浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 187浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 61浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦