紧凑低成本非制冷长波红外连续变焦光学设计

MEMS 2023-04-21 00:00

在非制冷红外热像仪方面,相对于已模块化的非制冷探测器及成像电路,光学系统在减轻产品质量、缩小体积尺寸、降低成本价格方面发挥重要作用,成为降低整机SWaP-C(Size、Weight、Power and Cost)特征的主要因素。

设计轻小型、低成本、高性能的非制冷红外光学系统需要考虑以下几个方面:透镜数量少、光学系统总长短、大物镜直径小、较高的光学调制传递函数(MTF)以及环境适应性好。

据麦姆斯咨询报道,近期,昆明物理研究所的科研团队在《红外与激光工程》期刊上发表了以“紧凑低成本非制冷长波红外连续变焦光学设计”为主题的文章。该文章第一作者为唐晗高级工程师,主要从事红外光机系统技术的研究工作。

本文引入三组联动变焦技术平衡像差及压缩系统总长,采用变F#设计技术约束系统大物镜直径,通过主动补偿的无热化技术实现系统在高低温情况下成像清晰,构建四片透镜架构的非制冷长波红外连续变焦光学系统,该系统具有总长短、成本低、环境适应性好、性能高等特点,能在手持侦察设备或无人系统平台中得到广泛应用,满足日益增长的市场需求。

三组联动连续变焦模型

三组联动连续变焦系统是通过三个透镜组在轴向连续移动改变光学系统组合焦距,同时保持像面位置不动并在连续变焦过程中成像质量良好的机械补偿变焦系统。三组联动连续变焦光学系统常见形式是由前固定组、变倍组、补偿组、第二补偿组和后固定组五组透镜组成。通过建立数学模型能快速分析变焦过程,确定变焦系统高斯光学参数,得到近轴光学初始架构。三组联动连续变焦系统运动模型如图1所示。

图1 三组联动连续变焦系统原理图

采用微分方程分析变焦核的三个组元—变倍组、补偿组及第二补偿组的运动规律。根据三组联动变焦模型,利用公式,通过编程迭代求出满足指标要求的各组元光焦度分配及光学元件位置间隔。

光学系统评价与分析

设计流程

非制冷长波红外连续变焦光学系统设计流程如图2所示。首先,根据三组联动连续变焦模型编制计算程序,依据设计指标从系统总长、光焦度分配、零件间隔等方面优选初始光学架构,建立理想光学模型;其次,根据元件光焦度合理选型选材,设置评价函数进入优化和全局优化;再次,依据评价函数收敛结果评价常温及高低温环境成像质量;然后进入公差分析环节,使得系统达到加工装配要求的容差范围,其中评价函数修改优化、像质评价及公差分析环节反复多次迭代,直至达到设计技术指标要求;最后,开展系统变焦曲线重整化操作,完成系统设计。

图2 连续变焦光学系统设计流程图

设计指标

根据目前市场主流的640×512@12 μm非制冷氧化钒焦平面探测器,设计了一款紧凑低成本、高透过率、全温度范围使用的非制冷长波红外连续变焦光学系统。系统主要技术指标见表1。

表1 光学系统技术指标

设计过程

按照设计流程,首先根据三组联动连续变焦模型,编制三组联动变焦系统初始参数计算程序。依据光学系统设计指标,求解连续变焦系统高斯光学参数(即元件光焦度、间隔分配)建立近轴光学系统。三组联动连续变焦系统含有五个组元,若要实现四片透镜架构需要减去一个组元,从校正像差难易程度分析,第二补偿组兼具后固定组平衡像差的能力,减去后固定组是合理可行的。

考虑设置孔径光阑位置。孔径光阑位置对大物镜直径及系统像差平衡有显著影响。经分析,将孔径光阑设置在补偿组上,能有效减少大物镜直径,降低像差校正难度。采用固定口径光阑,通过变F#设计技术使得系统F#随系统视场变化,结合成像电路自动增益算法减轻变F#带来的影响。

将程序计算的各焦距段参数输入光学辅助设计软件系统,设置多重结构,根据各组元光焦度合理选择透镜形状、透镜材料并设置优化评价函数,设置二元衍射面和高次非球面,以提供更多的优化变量及设计自由度,提升光学系统成像质量。系统在三个焦距位置(短焦距20.7 mm、中焦距80 mm、长焦距126 mm)的初始架构如图3所示。

图3 连续变焦光学多重系统图

设计结果

紧凑低成本非制冷长波红外连续变焦光学系统最终设计结果如图4所示。整个系统共采用四片透镜,最大透镜加工直径为116 mm,光学系统总长为180 mm,光学零件总质量为418 g,远摄比为1.44。前固定组是正光焦度的锗透镜;变倍组为负光焦度的锗透镜;补偿组为正光焦度的锗透镜;第二补偿组为正光焦度低温度折射系数的硫系玻璃透镜。系统共采用一个二元衍射面和三个非球面,将第二补偿组作为调整环节,用于系统主动消热及视距调焦。孔径光阑设置于补偿组前表面,在大视场到小视场连续变焦过程中,系统F#线性变化范围为1.05~1.2,焦距变化范围为20.7~126 mm,对应视场变化范围为21°×16.8°~3.5°×2.8°,变焦过程连续、像质良好,符合设计指标要求。

图4 连续变焦光学系统布局图

光学系统评价与分析

系统常温像质评价

光学调制传递函数:理想光学系统对应的MTF即为系统传函衍射极限。光学系统MTF如图5所示。系统在三个焦距状态的MTF接近衍射极限,成像质量良好。

图5 连续变焦光学系统MTF曲线

点列图:光学系统以主光线的交点为参考点,计算与该点最远的点对应的距离为弥散斑(SPT)几何半径,同时用最小二乘算法计算各点和参考点的平均距离,称为弥散斑均方根(RMS)半径。光学系统点列图如图6所示,系统在三个视场下的最大弥散斑RMS半径值为6.8 μm,表明系统成像清晰,满足使用要求。

图6 连续变焦光学系统点列图

畸变:为理想像高与实际主光线高度的差。光学系统畸变情况如图7所示,在小视场时,最大畸变为0.92%,在大视场时,最大畸变为3.08%,该系统在连续变焦过程中畸变对成像无明显影响。

图7 连续变焦光学系统小视场 (a)及大视场 (b)畸变情况

系统高低温像质评价

非制冷长波红外连续变焦光学系统因相对孔径大、常用透镜材料温度折射率系数大等因素,影响光学系统在高低温环境中的成像质量。该系统采用主动补偿技术,即通过移动第二补偿组使光学系统在−40~+60 ℃温度范围成像质量满足使用要求。

图8为系统在长焦126 mm及短焦20.7 mm时在高低温下经补偿后的光学调制传递函数。图9为系统在长焦126 mm及短焦20.7 mm时在高低温下经补偿后的系统点列图。从高低温传函图及点列图中可以看出,连续变焦系统通过主动补偿在−40~+60 ℃范围内成像质量满足使用要求。

图8 高低温环境连续变焦光学系统MTF曲线

图9 高低温环境连续变焦光学系统点列图

光学系统公差分析

公差分析能够充分评价各项公差对光学系统成像质量的影响,并评估光学零件加工工艺、光机装调的难易程度。对系统成像质量影响较大的制造公差、组装公差要适当调整,并需要多次迭代优化。

光学设计软件运用统计算法对公差进行预估。对于中、高精度光学系统,按照表2修改默认公差表,在系统小视场常温状态采用灵敏度分析得到统计的误差评估表,其中公差最严重项目如图10所示。

表2 常用Zemax公差表

图10 最严重项目

从图10可以看出,第一透镜、第二透镜的倾斜与第二透镜前表面的光圈局部公差为“最严重项目”,但对系统成像质量影响较小,容差可控。

图11、图12分别为系统弥散斑RMS及MTF公差分析结果。从图11可知,系统弥散斑RMS半径的设计值为5.3 μm、改变量统计平均值为0.78 μm以及加工装配后弥散斑RMS半径的估计值为6.09 μm,较好地满足实际使用。从图12可知,系统40 lp/mm处的MTF设计值为0.358,改变量为0.0227,加工装配后MTF的估计值为0.336,满足实际使用需求。

图11 弥散斑RMS半径估计值

图12 MTF估计值

系统二元衍射面加工分析

系统在补偿组前表面引入一个二元衍射面用于平衡倍率色差,在锗基底上引入的二元衍射面参数为Norm Radius=22 mm,H1=−10.53,H2=−1.48。计算得到二元衍射面的环带数为1,环带深度为3.18 μm。二元衍射面的位相及周期同元件直径的关系如图13所示,锗基底二元衍射面可采用单点金刚石车削加工。该二元衍射元件衍射环带少,基底材料硬度低,加工简单,成本与非球面透镜相差不大。

图13 二元面位相、周期与元件直径的关系

在8.0~12.0 μm工作波段范围内,取中心波长9.6 μm,利用衍射效率计算公式得到波段平均衍射效率为95.5%,元件衍射效率如图14所示。考虑光学零件加工引起的遮挡效应及表面粗糙度造成光束散射等因素,使用波段平均衍射效率约为92.0%。因此,光学系统透过率为:τ=0.96×0.975×0.92×0.975=0.84。满足系统光学透过率要求。

图14 二元衍射面衍射效率

系统凸轮曲线重整化

系统设计的最后阶段还需要计算变倍组、补偿组及第二补偿组随焦距变化的位移量。优化设计过程中只给出变焦系统五重结构,包含了系统变焦区间(长焦、短焦)及中间三个焦距位置,实际凸轮结构设计需要覆盖整个变焦区间,需要完整的变焦曲线,即以变焦间隔为自变量,以系统焦距为函数的曲线方程,或充分稠密的数据表,该项操作称为变焦曲线的“重整化”。

与两个运动组元的正组补偿或负组补偿系统中变倍组与补偿组位置关系一一对应不同,三组联动变焦系统的每一个变倍组位置存在多个补偿解,因此三组联动变焦系统曲线重整需考虑凸轮曲线平滑及单调性。将系统的曲率半径及非球面参数设置为定值,将变焦间隔设为变量,从短焦到长焦插入多重结构按一定的间隔赋值,一般变倍比小于10时,200个焦距位置数据对凸轮结构设计已足够,编制ZPL宏程序自动设置操作数,改变焦距值逐次优化并控制相邻焦距变倍组及补偿组的相对移动量,得到整个变焦区间的变焦间隔及评价函数收敛情况。系统凸轮曲线如图15所示。从图中可知变倍组最大行程为56 mm,补偿组最大行程为17.5 mm,第二补偿组最大行程为4.5 mm;变倍组、补偿组曲线平滑无拐点采用凸轮轨道驱动,凸轮转角与变倍组与补偿组的压力升角关系如图16所示。第二补偿组采用单个电机驱动,有利于系统视距调焦及主动消热,考虑高低温消热补偿行程,该组最大移动量为6.6 mm。

图15 连续变焦光学系统凸轮曲线

图16 凸轮转角与压力升角关系

结论

随着红外热像仪朝着SWaP-C方向快速迭代,影响非制冷连续变焦红外热像仪尺寸、体积、质量、价格等方面的变焦光学系统日益朝着总长短、体积小、成本低、性能高、环境适应性好等方面发展,以满足民用、军事等各方面的应用需求。基于640×512像元间距12 μm的非制冷焦平面探测器,采用变F#设计方法、引入三组联动变焦设计技术、通过主动补偿消热差,实现了一款四片透镜结构的紧凑低成本连续变焦光学系统设计。系统焦距变化范围为20.7~126 mm,相应F#在1.05~1.2之间变化,对应视场变化范围为21°×16.8°~3.5°×2.8°,变倍比为6.0×,最大物镜口径116 mm,光学总长180 mm,远摄比为1.44,光学零件总质量418 g,零件加工工艺成熟,加工装调容差较好,变焦凸轮曲线平滑,凸轮轨道易于加工,运动组元伺服控制简单,系统在−40~+60 ℃环境下成像清晰,满足高低温使用要求。该紧凑低成本非制冷长波红外连续变焦光学系统将在导航、侦察、警戒、搜索及跟踪等无人系统平台或手持热像仪产品中具有广阔的市场前景,推动非制冷红外热像仪进一步朝着降低SWaP-C方向发展。

这项研究获得国家重点研发计划(0701200)的资助和支持。

论文信息:

http://www.irla.cn/cn/article/doi/10.3788/IRLA20220607

延伸阅读:

《新兴图像传感器技术及市场-2023版》

《光谱成像市场和趋势-2022版》
《小型、微型和芯片级光谱仪技术及市场-2020版》 


MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 在物联网(IoT)短距无线通信生态系统中,低功耗蓝牙(BLE)数据透传是一种无需任何网络或基础设施即可完成双向通信的技术。其主要通过简单操作串口的方式进行无线数据传输,最高能满足2Mbps的数据传输速率,可轻松实现设备之间的快速数据同步和实时交互,例如传输传感器数据、低采样率音频/图像与控制指令等。低功耗蓝牙(BLE)数据透传解决方案组网图具体而言,BLE透传技术是一种采用蓝牙通信协议在设备之间实现数据透明传输的技术,设备在通信时会互相验证身份和安全密钥,具有较高的安全性。在不对MCU传输数据进
    华普微HOPERF 2025-01-21 14:20 33浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 25浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 42浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 124浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 156浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 41浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 75浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 119浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 89浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 34浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 149浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 206浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦