信号调制的工作原理

EDN电子技术设计 2020-07-03 00:00


要理解如何进行无线数据传输,我们需要了解:


  • 什么是频率?

  • 信息 / 数据信号

    • 时间表示

    • 频率表示,为什么它很重要?

  • 滤波器如何工作?

  • FCC 通信频段

  • 调制和解调


这些主题可能您在大学专业课上学过(您也可以在维基百科中查询),其中涉及非常庞大的知识。此前我为高级项目组中非电子工程专业的学生准备的 PPT 中,配套介绍了这些主题――学生们期望能够弄清楚我们谈到的“900MHz”、“2.4GHz”或“跳频”等术语。本文限于篇幅,难以对这些主题的阐述完 整、彻底,忽略了专业课所涉及的很多细节,仅提供无线传输方面的概念性说明。


什么是频率?


频率是描述每隔多长时间振荡一次或重复一次的术语,单位为赫兹(Hz)或秒的倒数。如果每秒振荡 60 次,则其频率为 60 Hz。在本文中,我们将主要探讨音频波(气压的振荡),及其如何以数百千赫频率从无线电台传播到您的车载收音机上(或任何 AM 无线电台)。任何波都有一个频率,光波也一样。光波和其他更高频率的波(例如 X 射线、伽马射线、微波)一般用波长来表示,而不用频率。例如,绿色光的波长大约为 400 纳米。


下图显示了行进波单位间的关系:


正弦波的基本单位。


假设信号速度恒定,则波长和频率是可以换算的,不过这已超出本文的讨论范畴。


不同复杂性的信息信号


如果发送一个纯正弦波信号(称为“音频”)。它不携载任何实际信息,听上去也并不好听。下图是一个正弦波的图像,X 轴为时间,Y 轴为电压,这是一个 150 Hz 参考信号。


单音频信号(时域)


 那么为什么要看这幅图像呢?让我们来看一下时域中复杂性不断增加的信号。这是一个双音频信号(两个音频叠加在一起)。此正弦波与上一个正弦波相同,只不过又加上了另一个倍频(300 Hz)的正弦波。


双音频信号(时域)


那么由多个不同频率的音频组成的信号是什么样的呢?


多音频信号(时域)


它变得毛刺更多。您能在此图中看到的唯一真实信息便是在指定时间内的电压电平。这就是信息的本质,它极其重要——但也使分析变得复杂,更使了解调制工作变 得更加困难。为此,您可能希望用另一种不同的方式(频域)绘制信号图像。它显示信号在一系列频率上的强度。让我们看一下。


为何信号的频谱很重要?


要将大量信号转换到频域中,需要进行精密的数学运算。这项工作很困难,计算量很大,必须反复练习才能掌握。我甚至定期对那些重要信号的进行卷积运算,练习 我的转换能力。不管怎样,让我们看一下以上三个信号如何用这种形式来表示(这里忽略中间的推演运算)。我们不再绘制信号电压随时间的变化,而是绘制信号功 率随频率的变化。


单音频信号(频域)


双音频信号(频域)


多音频信号(频域)


注意到图中明显的尖峰了吗?那是正弦波在特定频率(X 轴)上的数学表示。理想情况下,这些尖峰应当是无限窄(宽度)和无限高的,但是受我所使用的 Spice 软件的技术水平限制,它是不完美的。这种信号称为脉冲信号。有关此信号的详细说明,请阅读此处!对于这个音频,我们看到在频域看到一个尖峰,在150Hz 处。而双音频信号在频域 有两个尖峰,在 150Hz 和 300Hz 处。多音频信号在时域中基本无法解读,时域信号中众多的小尖峰,是多个频率点的叠加组成的。


最后举一个例子,一个实际的音频信号。如下图,我采样了 15 秒歌手 Cream 的歌曲《白色的房间(White Room)》。不必为信号长的摸样担心,在 Eric Clapton 的吉他独奏期间,任何麦克风都没有损坏。


音频信号


这就是大多数信号的看上去的样子,尤其是模拟信号。人和乐器的声音并不是在离散的频率上播放,其频率内容分布在整个频率范围内(尽管某些内容几乎是听不到 的)。这个范围在 3 Hz 至 20kHz 之间,大约就是人耳能够听到的频率范围。低音部的频率较低,高音部的频率较高。Y 轴标度用 dB 表示,dB 表示一个比例,没有单位。在本质上来说,dB 值越高,那个频率对应的信号就越高。


理论上,我们可以用无数个音频信号累加之和来表示这个模拟信号。


滤波器!


幸好频域的图形表示可为滤波器设计提供一些帮助。滤波器有四种类型,包括:

  • 低通滤波器:高于“截止频率”的所有频率都被滤除。

  • 高通滤波器:低于“截止频率”的所有频率都被滤除。

  • 带通滤波器:距离“中心频率”一定范围外的所有频率都被滤除。

  • 带阻滤波器:距离“中心频率”一定范围内的所有频率都被滤除。


由上而下:带通滤波器、低通滤波器、高通滤波器


“3dB”点是信号输出降低大约 30% 的地方。dB 是一个对数标度:

x [dB] = 10 * log(x[linear])

x [linear] = 10^(x[dB]/10)


基于这个公式,x[linear] = 0.7,对应的x[dB]大约为 -3.0 dB,0.7就是70%,就是信号衰减30%,这时对应的频率就称为滤波器的截止频率。汽车音响就是一个实际的例子,它可能包括一个“分频器”,其特殊的 滤波器设计可将低频切换至低音扬声器、高频切换至高音扬声器。这对于无线接收机是非常重要的。


FCC 通信频段


FCC和其他国际组织一致认为,如果任由任何人随意使用任何频率,那么必然会导致绝对的混乱。因此,应为不同用户分配不同的频率范围。例如分别为 FM 无线电、AM 无线电、WiFi、移动电话、海事通信、空中交通管制、业余无线电、对讲机、军事通信、警用电台等应用分配不同频段。对了,我们还没提卫星或空间通信!这 真是太乱了,幸亏有 FCC 帮助管理。如果您感到好奇,不妨用谷歌搜索一下,马上就能找到一个更详细的图表。


FCC 频谱分配表

FCC 已为小范围的个人应用、业余爱好者的应用和其他常规“ISM 频段”应用(工业、科学、医疗)预留了部分频段。这就是 WiFi、对讲机、无线传感器和其他通信设备的工作频段。让我们再次讨论一下频率!人耳的听力范围为 20Hz 至 20kHz。如果我们的 AM 电台为 680kHz,那么无线电塔如何将声音变到该频率呢?它如何避免干扰到其他电台?接收机如何将信号频率转换回可听范围?


调制


让我们离开频域,回到时域。再次重申一下:我们的讨论过于简单,略过了很多细节!在此只是为了得到一个概念性的结果。之所以这么说是因为,数学表示最适合在时域中使用,而图形表示在频域中效果最佳。


调制的作用就是将信号从低频(信息)转换到高频(载波)。思路很简单:用您的信息乘以高频载波,例如 680 kHz,这就是 AM 广播!稍等一下,事情果真如此简单吗?让我们看几个数学关系式。在此例中,θ 就是信息(可听内容),φ 是载波(例如, AM 广播频率)。


图中文字中英对照


Product-to-sum[23]

cos

sin

积化和差[23]

cos

sin


我们的 AM 信号如果用公式来表达,涉及多个信号的乘法运算,这在时域或频域中是很难想像的,因为我们仅仅看到音频是什么样的。但是上述这种对应关系告诉我们:两个信号相乘可用两个信号相加来表示!现在,我们很容易在频域中绘制出经乘法运算得到的信号。


在载波(1000 Hz)上调制的单音频(150 Hz)


在此图中,我们用 150Hz 音频乘以 1000Hz 载波。上表显示了两个半功率信号,分别位于 1000-150 和 1000+150 Hz处,也就是在 850Hz 和 1150Hz 处。那么当经过调制后,我们每个音节的表现如何呢?



声音调制到 700 kHz


不出所料,我们看到了两个信号。一个是载波 + 信息,另一个是载波 - 信息(甚至注意到它是如何反转的)。


这就是 AM 频谱和信号内容的大致图解。



解调


现在我们来讨论接收机。所有信号均从天线开始,在同一时间查看所有信号,看到的是一团乱麻。天线拾取到大量的数据,但它并不负责进行分类,这是调谐器和其 他硬件的工作。信号解调的原理与调制原理完全相同,非常方便!要将我们的音频信号转回到“基带”,并将其发送至扬声器,我们可以再次用载波乘以所有信号。


这个公式中包含一大串数学函数、括号和频率变量。不过它是对的,我们由此导出了四个信号:

  • 1/4 功率信号,(2*载波 + 信息)

  • 1/4 功率信号,(信息)

  • 1/4 功率信号,(2*载波 - 信息)

  • 1/4 功率信号,(-信息)


让我们忽略这个包含负频率的项,它是我们讨论调制及涉及的运算时,常常会出现的数学产物。在双倍载波上的两个信号(假设载波远大于信息,它们几乎是相同 的)可用低通滤波器滤出。低通滤波器会阻断信号的所有高频内容,于是只将原始信息留给我们。我们可用放大器放大原始信息,然后发送到扬声器。太酷了!这就 是它的图像,但是要向后延迟一点。


结论


本文的目的是高度概括地介绍无线电信号是如何传输和调制的。通过将多个音频(或基带)信号乘以不同的高频信号(载波),我们可以通过同一个信道成功传输多 个数据流而不会相互干扰。再次用载波相乘,将调制的信号转换回基带,再用低通滤波器和放大器清理并放大信号,即可让我们听到各种美妙动听的声音!


-END-


一个学习了很多年FPGA人写的书,从接触到精通,写的很中肯。希望对所有刚刚踏入FPGA大门的人,有所帮助!



《从零开始走进FPGA世界



...

点击阅读原文可直接下载完整资料,如果您的手机下载出错,请使用电脑访问网站下 载,下载链接:https://mbb.eet-china.com/download/200099.html
EDN电子技术设计 EDN China电子技术设计为电子设计工程师和设计经理人提供前沿深度的电子资讯、设计实例应用方案。
评论
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 516浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 180浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 495浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 107浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 454浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 465浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 477浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 68浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 487浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 57浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦